Theoretical study of the influence of empty-hole on both the blasting parameters and the blasting effect of straight-hole cutting
-
摘要: 为解决含空孔直眼掏槽中炮孔间距、炮孔与空孔距离的确定问题,首先,从爆生气体膨胀做功致裂岩体和空孔效应入手,推导了爆生裂纹的长度计算公式,确定了掏槽炮孔间距a和炮孔与空孔距离L的计算公式,得到了大空孔直眼掏槽空孔处片裂区长度公式,确立了应力集中作用下空孔迎爆侧径向裂纹产生的判据;然后,以灰岩(硬岩)和泥岩(软岩)对比分析了不同设计思想下的爆破参数和掏槽效果;最后,结合工程实践验证了理论分析的可靠性。结果表明:不同设计思想下,含空孔直眼掏槽的爆破破岩机理不同,以a为主时,相邻炮孔间裂纹的贯通是形成槽腔的关键,而以L为主且考虑空孔效应时,炮孔与空孔优先贯通形成槽腔。硬、软岩中应力波(动作用)与爆生气体(静作用)对爆生裂纹长度的贡献率约为4∶1和9∶1,空孔效应导致的软岩的片裂区大于硬岩的,爆破参数设计时应重点考虑;而空孔处产生径向裂纹的临界距离均小于炮孔爆生裂纹长度与空孔半径之和,因此不会产生径向裂纹,爆破参数设计时可不予考虑。以上结果说明,不同设计思想对槽腔掏槽爆破参数和槽腔爆破效果影响较大,基于爆生气体致裂的爆生裂纹长度计算模型可为爆破参数设计提供参考。Abstract: The paper is aimed to determine the distance between blast holes (a) and the distance between boreholes and the empty holes (L) in the straight-hole cutting with empty holes. Firstly, by considering the crack mainly being fractured during the quasi-static expansion of explosion gas and the effect of empty hole, the calculation formula of the crack length is derived; and then, the calculation formulas of the distance between boreholes and the distance between blast holes and the empty hole are determined. Moreover, the formula of the length of the crack zone around the empty hole in the straight-hole cutting with large empty holes is obtained, and the criterion of the radial crack at the blasting side of the empty hole is established based on the effect of stress concentration around empty hole. Secondly, by considering two different design ideas, the blasting parameters and cut blasting effect are compared and analyzed for the blasting in both limestone (hard rock) and mudstone (soft rock),while the reliability of the theoretical analysis is verified by engineering practice. The results show that the rock breaking mechanism of straight-hole cut blasting with empty hole is different under the two design ideas. Namely, if a is taken as the main factor, then the coalescence of cracks between adjacent boreholes is the key factor to the formation of the cavity, whilst if L is taken as the main factor, the bore holes and empty holes are preferentially penetrated to form the cavity based on the empty hole effect. In addition, the contributions of stress wave (dynamic action) and detonation gas (static action) to the crack length in both hard rock and soft rock are about 4∶1 and 9∶1, respectively. Considering the empty hole effect, the flake fracture zone in soft rock is larger than that in hard rock, to which more attention should be paid in the design of blasting parameters. Whereas, the critical length of radial crack initiated from the empty hole is less than the sum of the blasting crack length from cutting hole and the radius of empty hole, so that the radial cracks initiated from the empty hole will not be generated, which can be ignored in the blasting parameter design. The results indicate that the two different design ideas have great influence on cutting blasting parameters and blasting effect, and the calculation model of blasting crack length based on the driven of detonation gas can provide a good reference for the design of blasting parameters.
-
表 1 掏槽爆破参数
Table 1. Parameters of cut blasting
掏槽区岩体破坏判据 a/mm L/mm 相邻炮孔间裂隙贯通 $ \bar{y}{\text{≤}} a{\text{≤}} 2\bar{y} $ $ L=\sqrt{2}a/2 $ 炮孔与空孔贯通 $ a=\sqrt{2}L $ $ L=({L}_{2\mathrm{m}\mathrm{a}\mathrm{x}}+y+{r}_{1})/2\mathrm{或}L=y+{{\textit{z}}}_{1\mathrm{m}\mathrm{a}\mathrm{x}}+{r}_{1} $ 表 2 岩体物理力学参数
Table 2. Physical and mechanical parameters of rock
岩性 密度/(kg·m−3) 静态泊松比 动态泊松比 动态抗压强度/MPa 动态抗拉强度/MPa 灰岩 3 000 0.24 0.192 120.2 13.0 泥岩 2 430 0.26 0.208 50.8 6.1 表 3 炸药参数
Table 3. Explosive parameters
密度/(kg·m−3) 直径/mm 长度/mm 每卷质量/kg 爆容/(m3·kg−1) 爆温/K 余容/(m3·kg−1) 爆速/(m·s−1) 1000 32 200 0.2 0.8 2300 6×10−4 3200 表 4 灰岩不同设计思想下
$a $ 与$L $ Table 4. a and L of limestoneunder different design ideas
序号 取值依据 L/mm a/mm 爆生裂纹半径/mm 裂隙与空孔关系 掏槽孔之间关系 1 以L为主 508 718 429 贯通 贯通 2 479 677 429 贯通 贯通 3 405 573 355 贯通 贯通 4 434 614 355 贯通 贯通 5 以a为主 455 644 429 贯通 贯通 6 376 533 355 贯通 贯通 表 5 不同设计思想下泥岩的掏槽爆破参数
Table 5. Cut blasting parameters of mudstone under different design ideas
序号 取值依据 L/mm a/mm 爆生裂纹半径/mm 裂隙与空孔关系 掏槽孔之间关系 1 以L为主 831 1175 549 贯通 未贯通 2 599 847 549 贯通 贯通 3 543 768 493 贯通 贯通 4 775 1096 493 贯通 未贯通 5 以a为主 582 824 549 贯通 贯通 6 523 740 493 贯通 贯通 表 6 不同岩性下爆破后参数
Table 6. Parameters after blasting in different rocks
指标 应力波与爆生气体共同
作用爆生裂纹半径/mm应力波单独作用爆生
裂纹半径/mm爆生气体作用爆生
裂纹扩展长度/mm爆生气体对爆生裂纹
长度贡献率/%片裂区范围/
mm空孔处径向裂纹产生
条件L2max/mm灰岩 429 355 74 17 29 423 泥岩 549 493 56 11 232 527 表 7 爆破参数
Table 7. Parameters of blasting
炮孔名称 深度/m a/mm L/mm 装药量/kg 雷管段别 掏槽孔 3.0 636 450 2.0 Ⅰ 辅助掏槽孔 3.0 1 018 720 1.8 Ⅱ -
[1] 戴俊, 杨永琦. 三角柱直眼掏槽爆破参数研究 [J]. 爆炸与冲击, 2000, 20(4): 364–368.DAI J, YANG Y Q. Researches on blasting parameters of triangle burn cut [J]. Explosion and Shock Waves, 2000, 20(4): 364–368. [2] 周少颖, 汪海波, 宗琦. 直眼掏槽爆破中大直径中空孔作用机理研究 [J]. 煤矿爆破, 2014(1): 23–25. DOI: 10.3969/j.issn.1674-3970.2014.01.007.ZHOU S Y, WANG H B, ZONG Q. Mechanism research of the effects of empty hole in parallel cut blasting [J]. Coal Mine Blasting, 2014(1): 23–25. DOI: 10.3969/j.issn.1674-3970.2014.01.007. [3] 林大能. 平巷掏槽爆破空孔尺寸效应及围岩频繁震动损伤累积特性研究 [D]. 长沙: 中南大学, 2006: 21–38. DOI: 10.7666/d.y1190361.LIN D N. Research on size effect of empty hole in horizontal roadway cut blasting & accumulating characteristic of surrounding rock damage caused by frequently blasting vibration [D]. Changsha: Central South University, 2006: 21–38. DOI: 10.7666/d.y1190361. [4] 王从银. 直眼掏槽的破岩机理及掏槽设计 [J]. 爆破, 1995(2): 51–55.WANG C Y. Rock-breaking mechanism and cutting design of straight-hole cutting [J]. Blasting, 1995(2): 51–55. [5] 刘圣贤, 胡清祥, 张勇. 爆生裂缝扩展长度的理论研究 [J]. 煤矿爆破, 1998(2): 17–19.LIU S X, HU Q X, ZHANG Y. Theoretical study on the propagation length of blasting cracks [J]. Coal Mine Blasting, 1998(2): 17–19. [6] 宗琦. 爆生气体的准静态破岩特性 [J]. 岩土力学, 1997, 18(2): 73–78. DOI: 10.16285/j.rsm.1997.02.014.ZONG Q. Investigation on features of rock quasi-static fragmentation by gaseous explosion product [J]. Rock and Soil Mechanics, 1997, 18(2): 73–78. DOI: 10.16285/j.rsm.1997.02.014. [7] 赵新涛, 刘东燕, 程贵海, 等. 爆生气体作用机理及岩体裂纹扩展分析 [J]. 重庆大学学报, 2011, 34(6): 75–80. DOI: 10.11835/j.issn.1000-582x.2011.06.014.ZHAO X T, LIU D Y, CHENG G H, et al. Analysis of blasting gas mechanism and rock crack growth [J]. Journal of Chongqing University, 2011, 34(6): 75–80. DOI: 10.11835/j.issn.1000-582x.2011.06.014. [8] 杨小林, 王梦恕. 爆生气体作用下岩石裂纹的扩展机理 [J]. 爆炸与冲击, 2001, 21(2): 111–116. DOI: 10.3321/j.issn:1001-1455.2001.02.005.YANG X L, WANG M S. Mechanism of rock crack growth under detonation gas loading [J]. Explosion and Shock Waves, 2001, 21(2): 111–116. DOI: 10.3321/j.issn:1001-1455.2001.02.005. [9] 严成增, 孙冠华, 郑宏, 等. 爆炸气体驱动下岩体破裂的有限元-离散元模拟 [J]. 岩土力学, 2015, 36(8): 2419–2425. DOI: 10.16285/j.rsm.2015.08.039.YAN C Z, SUN G H, ZHENG H, et al. Simulation of explosive gas-driven rock fracture by FEM/DEM [J]. Rock and Soil Mechanics, 2015, 36(8): 2419–2425. DOI: 10.16285/j.rsm.2015.08.039. [10] 戴俊, 杜晓丽. 岩石巷道楔形掏槽爆破参数研究 [J]. 矿业研究与开发, 2011, 31(2): 90–93,104. DOI: 10.13827/j.cnki.kyyk.2011.02.009.DAI J, DU X L. Research on blasting parameters of wedge-shaped cutting for rock tunnel driving [J]. Mining Research and Development, 2011, 31(2): 90–93,104. DOI: 10.13827/j.cnki.kyyk.2011.02.009. [11] 单仁亮, 黄宝龙, 高文蛟, 等. 岩巷掘进准直眼掏槽爆破新技术应用实例分析 [J]. 岩石力学与工程学报, 2011, 30(2): 224–232.SHAN R L, HUANG B L, GAO W J, et al. Case studies of new technology application of quasi-parallel cut blasting in rock roadway drivage [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 224–232. [12] 张召冉, 杨仁树. 岩石巷道“多阶段”掏槽技术及应用研究 [J]. 岩石力学与工程学报, 2019, 38(3): 551–559. DOI: 10.13722/j.cnki.jrme.2018.0460.ZHANG Z R, YANG R S. Multi-step cutting technology and its application in rock roadways [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 551–559. DOI: 10.13722/j.cnki.jrme.2018.0460. [13] 费鸿禄, 洪陈超. 应力波和爆生气体共同作用下裂隙区范围研究 [J]. 爆破, 2017, 34(1): 33–36,107. DOI: 10.3963/j.issn.1001-487X.2017.01.006.FEI H L, HONG C C. Study on crushed and fracture zone range under combined action of stress and detonation gas [J]. Blasting, 2017, 34(1): 33–36,107. DOI: 10.3963/j.issn.1001-487X.2017.01.006. [14] 王文龙. 钻眼爆破 [M]. 北京: 煤炭工业出版社, 1984: 92–93. [15] 戴俊. 岩石动力学特性与爆破理论 [M]. 2版. 北京: 冶金工业出版社, 2013: 234–238. [16] 张召冉, 陈华义, 矫伟刚, 等. 含空孔直眼掏槽空孔效应及爆破参数研究 [J]. 煤炭学报, 2020, 45(S2): 791–800. DOI: 10.13225/j.cnki.jccs.2019.1591.ZHANG Z R, CHEN H Y, JIAO W G, et al. Rock breaking mechanism and blasting parameters of straight hole cutting with empty-hole [J]. Journal of China Coal Society, 2020, 45(S2): 791–800. DOI: 10.13225/j.cnki.jccs.2019.1591. [17] 梁瑞, 吕亚茹, 周文海, 等. 地下采场爆破炮孔堵塞效应及长度研究 [J]. 地下空间与工程学报, 2020, 16(5): 1546–1554.LIANG R, LV Y R, ZHOU W H, et al. Study on blockage effect and the stem length in underground stope blasting [J]. Chinese Journal of Underground Space and Engineering, 2020, 16(5): 1546–1554. [18] 肖思友, 姜元俊, 刘志祥, 等. 高地应力下硬岩爆破破岩特性及能量分布研究 [J]. 振动与冲击, 2018, 37(15): 143–149. DOI: 10.13465/j.cnki.jvs.2018.15.020.XIAO S Y, JIANG Y J, LIU Z X, et al. Hard rock blasting energy distribution and fragmentation characteristics under high earth stress [J]. Journal of Vibration and Shock, 2018, 37(15): 143–149. DOI: 10.13465/j.cnki.jvs.2018.15.020. [19] 孙可明, 王金彧, 辛利伟. 不同应力差条件下超临界CO2气爆煤岩体气楔作用次生裂纹扩展规律研究 [J]. 应用力学学报, 2019, 36(2): 466–472. DOI: 10.11776/cjam.36.02.B130.SUN K M, WANG J Y, XIN L W. Research on the law of secondary cracks propagation in coal and rock caused by gas wedging during supercritical CO2 explosion under different stress differences [J]. Chinese Journal of Applied Mechanics, 2019, 36(2): 466–472. DOI: 10.11776/cjam.36.02.B130. [20] 郭东明, 李旭鹏, 王汉军, 等. 益新煤矿中心大空孔掏槽爆破现场试验研究 [J]. 中国矿业, 2016, 25(4): 82–86. DOI: 10.3969/j.issn.1004-4051.2016.04.017.GUO D M, LI X P, WANG H J, et al. Field test on center big empty hole in cut blasting in Yixin coal mine [J]. China Mining Magazine, 2016, 25(4): 82–86. DOI: 10.3969/j.issn.1004-4051.2016.04.017. -