主控提前点火对复合推进剂慢速烤燃响应的影响

张海军 聂建新 王领 王栋 胡峰 郭学永

张海军, 聂建新, 王领, 王栋, 胡峰, 郭学永. 主控提前点火对复合推进剂慢速烤燃响应的影响[J]. 爆炸与冲击, 2022, 42(10): 102901. doi: 10.11883/bzycj-2021-0521
引用本文: 张海军, 聂建新, 王领, 王栋, 胡峰, 郭学永. 主控提前点火对复合推进剂慢速烤燃响应的影响[J]. 爆炸与冲击, 2022, 42(10): 102901. doi: 10.11883/bzycj-2021-0521
ZHANG Haijun, NIE Jianxin, WANG Ling, WANG Dong, HU Feng, GUO Xueyong. Effect of pre-ignition on slow cook-off response characteristics of composite propellant[J]. Explosion And Shock Waves, 2022, 42(10): 102901. doi: 10.11883/bzycj-2021-0521
Citation: ZHANG Haijun, NIE Jianxin, WANG Ling, WANG Dong, HU Feng, GUO Xueyong. Effect of pre-ignition on slow cook-off response characteristics of composite propellant[J]. Explosion And Shock Waves, 2022, 42(10): 102901. doi: 10.11883/bzycj-2021-0521

主控提前点火对复合推进剂慢速烤燃响应的影响

doi: 10.11883/bzycj-2021-0521
基金项目: 国家自然科学基金(11772058)
详细信息
    作者简介:

    张海军(1992- ),男,博士研究生,zhj9209@163.com

    通讯作者:

    聂建新(1977- ),男,博士,副研究员,niejx@bit.edu.cn

  • 中图分类号: O389

Effect of pre-ignition on slow cook-off response characteristics of composite propellant

  • 摘要: 为研究主控点火对复合推进剂慢速烤燃响应特性的影响,设计并开展了典型复合推进剂装药慢速烤燃实验,结合数值计算和推进剂热分解失重及形貌演化过程,探讨了点火前推进剂内的温度分布情况及推进剂细观结构热损伤规律。研究发现:针对复合推进剂装药的慢速烤燃,在推进剂发生自热点火前温度较低时进行主控点火可以有效降低反应剧烈程度;随着加热温度的升高,推进剂中部分组分发生分解,导致推进剂内部温度高于壳体温度,同时推进剂中粘结剂及AP的分解会导致推进剂装药形成多孔状的结构,在点火后更易导致对流燃烧,加剧反应烈度;当壳体温度仅138 ℃时,推进剂温度最高点达到150 ℃,最高点首先出现在靠近喷管的尾部,考虑到粘结剂及AP部分分解导致的孔隙结构会加剧反应的响应烈度,主控点火温度应设定在138 ℃以下。
  • 图  1  慢速烤燃系统及超压传感器布置示意图

    Figure  1.  Schematic diagram of slow cook-off system

    图  2  实验现场

    Figure  2.  The experimental site

    图  3  烤燃箱内布置

    Figure  3.  Layout inside the cook-off oven

    图  4  热电偶布置示意图

    Figure  4.  Thermocouple arrangement position

    图  5  数值计算模型

    Figure  5.  The model of numerical calculation

    图  6  实验1中不同位置温度变化曲线

    Figure  6.  The temperature monitoring data in experiment 1

    图  7  实验2中不同位置温度变化曲线

    Figure  7.  The temperature monitoring data in experiment 2

    图  8  实验1反应后现场破坏情况

    Figure  8.  Field damage after reaction in experiment 1

    图  9  实验1超压数据

    Figure  9.  The shock wave pressure in experiment 1

    图  10  实验2反应后现场破坏情况

    Figure  10.  Field damage after reaction in experiment 2

    图  11  实验1中监测点5温度实验与数值计算结果对比

    Figure  11.  Comparison of temperature test and simulation results of monitoring point 5 in experiment 1

    图  12  慢速烤燃过程中温度云图

    Figure  12.  The temperature nephogram for slow cook-off

    图  13  推进剂药片缓慢加热实验装置

    Figure  13.  Experimental device for slow heating propellant tablets

    图  14  HTPE推进剂缓慢加热质量及形貌变化过程

    Figure  14.  Mass fraction and morphological change of HTPE propellant

    图  15  推进剂缓慢加热过程中细观形貌变化

    Figure  15.  Micromorphological change of propellant during slow cook-off

    图  16  不同温度点火前150 ℃以上推进剂的分布

    Figure  16.  Distribution of propellants above 150 ℃ before ignition at different temperatures

    图  17  150℃以上推进剂占比随烤燃温度变化

    Figure  17.  Proportion of propellant above 150 ℃ varying with cook-off temperature

    表  1  烤燃件材料参数[9]

    Table  1.   Material parameters of cook-off components[9]

    材料密度/(kg·m−3比热容/(J·kg−1·℃−1热导率/(W·m−1·℃−1指前因子/s−1活化能/(kJ·mol−1)分解热/(kJ·kg−1)
    壳体8 030502.4816.27
    绝热层1 2221 9980.226
    空气1.2251006.430.0242
    推进剂1 7401 7000.2142.7536×1011140.06 348
    下载: 导出CSV
  • [1] 田勇, 李敬明. 弹药安全的新发展:安全弹药刍议 [J]. 含能材料, 2017, 25(2): 91–93. DOI: 10.11943/j.issn.1006-9941.2017.02.00X.

    TIAN Y, LI J M. New development of ammunition safety: Robust munition [J]. Chinese Journal of Energetic Materials, 2017, 25(2): 91–93. DOI: 10.11943/j.issn.1006-9941.2017.02.00X.
    [2] 董海山. 钝感弹药的由来及重要意义 [J]. 含能材材, 2006, 14(5): 321–322. DOI: 10.3969/j.issn.1006-9941.2006.05.001.

    DONG H S. The importance of the insensitive munitions [J]. Chinese Journal of Energetic Materials, 2006, 14(5): 321–322. DOI: 10.3969/j.issn.1006-9941.2006.05.001.
    [3] 李军, 焦清介, 庞爱民, 等. 固体发动机低易损性评估研究进展 [J]. 固体火箭技术, 2019, 42(1): 1–6. DOI: 10.7673/j.issn.1006-2793.2019.01.001.

    LI J, JIAO Q J, PANG A M, et al. Recent progress on evaluation of low-vulnerability properties for solid rocket motor [J]. Journal of Solid Rocket Technology, 2019, 42(1): 1–6. DOI: 10.7673/j.issn.1006-2793.2019.01.001.
    [4] YE Q, YU Y G. Numerical simulation of cook-off characteristics for AP/HTPB [J]. Defence Technology, 2018, 14: 451–456. DOI: 10.3969/j.issn.2214-9147.2018.05.017.
    [5] YE Q, YU Y G. Study on cook-off behavior of HTPE propellant in solid rocket motor [J]. Applied Thermal Engineering, 2019, 167(8): 114798. DOI: 10.1016/j.applthermaleng.2019.114798.
    [6] 戴湘晖, 段建, 沈子楷, 等. 侵彻弹体慢速烤燃响应特性实验研究 [J]. 兵工学报, 2020, 41(2): 291–297. DOI: 10.3969/j.issn.1000-1093.2020.02.010.

    DAI X H, DUAN J, SHEN Z K, et al. Experiment of slow cook-off response characteristics of penetrator. [J]. Acta Armamentarii, 2020, 41(2): 291–297. DOI: 10.3969/j.issn.1000-1093.2020.02.010.
    [7] DENG H, SHEN F, LIANG Z F, et al. Numerical simulation and experimental study on slow cook-off response characteristics of composite B [J]. Journal of Physics Conference Series, 2020, 1507: 022014. DOI: 10.1016/j.dt.2020.08.001.
    [8] 陈中娥, 唐承志, 赵孝彬. HTPB/AP推进剂的慢速烤燃特征 [J]. 含能材料, 2006, 14(2): 155–157. DOI: 10.3969/j.issn.1006-9941.2006.02.024.

    CHEN Z E, TANG C Z, ZHAO X B. Characteristics of HTPB/AP propellants in slow cook-off [J]. Chinese Journal of Energetic Materials, 2006, 14(2): 155–157. DOI: 10.3969/j.issn.1006-9941.2006.02.024.
    [9] KOU Y, CHEN L, LU J, et al. Assessing the thermal safety of solid propellant charges based on slow cook-off tests and numerical simulations [J]. Combustion and Flame, 2021, 228: 154–162. DOI: 10.1016/j.combustflame.2021.01.043.
    [10] KLAUS M, SIEGFRIED E, MANFRED B. Fast burning minmum smoke propellant based on AP/CL20/GAP[C]// Bordeaux: Insensitive Munitions & Energetic Materials Technology Symposium, 2001.
    [11] 冯晓军, 王晓峰, 韩助龙. 炸药装药尺寸对慢速烤燃响应的研究 [J]. 爆炸与冲击, 2005, 25(3): 285–288.

    FENG X J, WANG X F, HAN Z L. The study of charging size influence on the response of explosives in slow cook-off test [J]. Explosion and Shock Waves, 2005, 25(3): 285–288.
    [12] 陈朗, 马欣, 黄毅民, 等. 炸药多点测温烤燃实验和数值模拟 [J]. 兵工学报, 2011, 32(10): 1230–1236.

    CHEN L, MA X, HUANG Y M, et al. Multipoint temperature measuring cook-off test and numerical simulation of explosive [J]. Acta Armamentarii, 2011, 32(10): 1230–1236.
    [13] 周捷, 智小琦, 王帅, 等. B炸药慢速烤燃过程的流变特性 [J]. 爆炸与冲击, 2020, 40(5): 052301. DOI: 10.11883/bzycj-2019-0321.

    ZHOU J, ZHI X Q, WANG S, et al. Rheological properties of composition B in slow cook-off process [J]. Explosion and Shock Waves, 2020, 40(5): 052301. DOI: 10.11883/bzycj-2019-0321.
    [14] 朱道理, 周霖, 张向荣, 等. DNAN及TNT基熔铸炸药综合性能比较 [J]. 含能材料, 2019, 27(11): 923–930. DOI: 10.11943/CJEM2019170.

    ZHU D L, ZHOU L, ZHOU X R, et al. Comparison of comprehensive properties for DNAN and TNT-based melt-cast explosives [J]. Chinese Journal of Energetic Materials, 2019, 27(11): 923–930. DOI: 10.11943/CJEM2019170.
    [15] HO S Y, FERSCHL T, FOUREUR J. Ccorrelation of cook-off behaviour of rocket propellants with thermal mechanical and thermochemical properties: A274983[R]. MRL Technical Report.
    [16] 李文凤. AP/HTPB底排药烤燃特性的实验研究和数值模拟[D]. 南京: 南京理工大学, 2018.
    [17] 宋柳芳, 李尚文, 王拯, 等. HTPE推进剂烤燃试验尺寸效应及数值模拟 [J]. 含能材料, 2019, 27(9): 735–742. DOI: 10.11943/CJEM2019003.

    SONG L F, LI S W, WANG Z, et al. Size effect and numerical simulation of cook-off tests for HTPE propellant [J]. Chinese Journal of Energetic Materials, 2019, 27(9): 735–742. DOI: 10.11943/CJEM2019003.
    [18] Hazard assessment tests for nonnuclear munitions: MIL-STD-2105D [S]. USA: Department of Defense Test Method Standard, 2011.
    [19] 谭惠民. 固体推进剂化学与技术[M]. 北京: 北京理工大学出版社, 2015: 73–75.
    [20] 张海军, 聂建新, 王领等. 端羟基聚醚推进剂慢速烤燃尺寸效应 [J]. 兵工学报, 2021, 42(9): 1858–1866. DOI: 10.3969/j.issn.1000-1093.2021.09.006.

    ZHANG H J, NIE J X, WANG L, et al. Numerical dimulation on dize effect of hydroxyl terminated polyether propellant engine during slow cook-off [J]. Acta Armamentarii, 2021, 42(9): 1858–1866. DOI: 10.3969/j.issn.1000-1093.2021.09.006.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  440
  • HTML全文浏览量:  145
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 修回日期:  2022-05-12
  • 网络出版日期:  2022-05-20
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回