再结晶组织对TA2纯钛绝热剪切行为的影响

胡力 刘龙飞 王旭 杨智程 吴志强

胡力, 刘龙飞, 王旭, 杨智程, 吴志强. 再结晶组织对TA2纯钛绝热剪切行为的影响[J]. 爆炸与冲击, 2023, 43(1): 013104. doi: 10.11883/bzycj-2021-0529
引用本文: 胡力, 刘龙飞, 王旭, 杨智程, 吴志强. 再结晶组织对TA2纯钛绝热剪切行为的影响[J]. 爆炸与冲击, 2023, 43(1): 013104. doi: 10.11883/bzycj-2021-0529
HU Li, LIU Longfei, WANG Xu, YANG Zhicheng, WU Zhiqiang. Effects of recrystallized structures on adiabatic shear behaviors of TA2 pure titanium[J]. Explosion And Shock Waves, 2023, 43(1): 013104. doi: 10.11883/bzycj-2021-0529
Citation: HU Li, LIU Longfei, WANG Xu, YANG Zhicheng, WU Zhiqiang. Effects of recrystallized structures on adiabatic shear behaviors of TA2 pure titanium[J]. Explosion And Shock Waves, 2023, 43(1): 013104. doi: 10.11883/bzycj-2021-0529

再结晶组织对TA2纯钛绝热剪切行为的影响

doi: 10.11883/bzycj-2021-0529
基金项目: 国家自然科学基金(11772127, 51704112)
详细信息
    作者简介:

    胡 力(1996- ),男,硕士研究生,614320913@qq.com

    通讯作者:

    刘龙飞(1975- ),男,博士,教授,lfliu1@hnust.cn

  • 中图分类号: O347.3

Effects of recrystallized structures on adiabatic shear behaviors of TA2 pure titanium

  • 摘要: 使用二辊轧机对TA2工业纯钛进行多道次大应变冷轧处理,制备了冷轧总变形量为70%的TA2纯钛板。通过对冷轧TA2纯钛板进行500 ℃加热、不同保温时间的退火处理,获得了具有不同再结晶组织的钛板。基于帽形试样和限位环变形控制技术,在分离式霍普金森压杆装置上对不同再结晶组织的试样进行动态冲击冻结实验,结合光学显微镜和扫描电子显微镜表征试样冲击前后微观组织的变化,研究了再结晶组织对TA2纯钛绝热剪切行为的影响。结果表明,随着退火保温时间的延长,试样再结晶晶粒占比逐渐增大,晶粒分布由分散向局部聚集转变;在相同应变和应变率下,在所有试样中都观察到了绝热剪切带,再结晶晶粒占比高的试样更易诱发绝热剪切带中裂纹形核扩展。对比变形前后试样再结晶组织和几何必需位错变化,结合剪切区整体温升分析发现,再结晶晶粒作为材料软化点能够诱发剪切带的形成,而剪切带发展后期产生的绝热温升会促进剪切带内材料发生二次再结晶,提高剪切带内材料的韧性,延缓剪切裂纹的形成。
  • 图  1  实验装置和试样示意图

    Figure  1.  Schematics of the experimental device and its specimen

    图  2  不同退火保温时间试样的显微组织

    Figure  2.  Microstructures of specimens with different annealing time

    图  3  不同退火保温时间试样的EBSD形貌

    Figure  3.  EBSD morphologies of specimens with different annealing time

    图  4  不同退火保温时间试样晶粒尺寸和再结晶比例统计

    Figure  4.  Grain size and recrystallization ratio statistics of specimens with different annealing time

    图  5  不同退火保温时间试样的剪切应力-应变曲线

    Figure  5.  Shear stress-strain curves of specimenswith different annealing time

    图  6  不同退火保温时间试样剪切区塑性功引起的温升

    Figure  6.  Temperature rise due to plastic dissipation work in shear area of specimens with different annealing time

    图  7  不同退火保温时间试样剪切变形后剪切区域的微观形貌

    Figure  7.  Microstructures of the shear area after shear deformation for specimens with different annealing time

    图  8  不同退火保温时间试样剪切变形后剪切区的EBSD形貌

    Figure  8.  EBSD morphologies of shear area after shear deformation for specimens with different annealing time

    图  9  不同退火保温时间试样剪切变形前剪切区域的平均取向角差及分布

    Figure  9.  Kernel average misorientations and distributions of shear area before shear deformation for specimens with different annealing time

    图  10  不同退火保温时间试样剪切变形后剪切区域的平均取向角差及分布

    Figure  10.  Kernel average misorientations and distributions of shear area after shear deformation for specimens with different annealing time

  • [1] BAI H Q, ZHONG L S, KANG L, et al. A review on wear-resistant coating with high hardness and high toughness on the surface of titanium alloy [J]. Journal of Alloys and Compounds, 2021, 882: 160645. DOI: 10.1016/J.JALLCOM.2021.160645.
    [2] SUN J L, TRIMBY P W, YAN F K, et al. Shear banding in commercial pure titanium deformed by dynamic compression [J]. Acta Materialia, 2014, 79: 47–58. DOI: 10.1016/j.actamat.2014.07.011.
    [3] LEE W S, LIN C F, CHEN T H, et al. Correlation of dynamic impact properties with adiabatic shear banding behaviour in Ti-15Mo-5Zr-3Al alloy [J]. Materials Science and Engineering: A, 2008, 475(1/2): 172–184. DOI: 10.1016/j.msea.2007.05.027.
    [4] TERADA D, INOUE S, TSUJI N. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process [J]. Journal of Materials Science, 2007, 42(5): 1673–1681. DOI: 10.1007/s10853-006-0909-7.
    [5] TRESCA H M. On further applications of the flow of solids [J]. Journal of the Franklin Institute, 1878, 106(6): 396–404. DOI: 10.1016/0016-0032(78)90047-9.
    [6] MARCHAND A, DUFFY J. An experimental study of the formation process of adiabatic shear bands in a structural steel [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 251–283. DOI: 10.1016/0022-5096(88)90012-9.
    [7] 汤铁钢, 胡海波, 李庆忠, 等. 外部爆轰加载过程中金属圆管断裂实验研究 [J]. 爆炸与冲击, 2002, 22(4): 333–337.

    TANG T G, HU H B, LI Q Z, et al. Studies on the fracture of steel cycinder under external explosive loading [J]. Explosion and Shock Waves, 2002, 22(4): 333–337.
    [8] DAI L H, LIU L F, BAI Y L. Effect of particle size on the formation of adiabatic shear band in particle reinforced metal matrix composites [J]. Materials Letters, 2004, 58(11): 1773–1776. DOI: 10.1016/j.matlet.2003.10.050.
    [9] XU Y B, BAI Y L, MEYERS M A. Deformation, phase transformation and recrystallization in the shear bands induced by high-strain rate loading in titanium and its alloys [J]. Journal of Materials Sciences and Technology, 2006, 22(6): 737–746. DOI: 10.3321/j.issn:1005-0302.2006.06.002.
    [10] DAI L H, LIU L F, BAI Y L. Formation of adiabatic shear band in metal matrix composites [J]. International Journal of Solids and Structures, 2004, 41(22/23): 5979–5993. DOI: 10.1016/j.ijsolstr.2004.05.023.
    [11] DODD B, BAI Y L. Adiabatic shear localization: frontiers and advances [M]. 2nd ed. Amsterdam, the Netherlands: Elsevier, 2012.
    [12] 杨涛, 刘龙飞, 杨智程, 等. 表面粗糙度对TC4钛合金柱壳剪切带形成的影响 [J]. 力学学报, 2021, 53(3): 813–822. DOI: 10.6052/0459-1879-20-433.

    YANG T, LIU L F, YANG Z C, et al. Effect of surface roughness on the formation of shear band in Ti-6Al-4V alloy cylindrical shell [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 813–822. DOI: 10.6052/0459-1879-20-433.
    [13] ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. DOI: 10.1063/1.1707363.
    [14] HARTLEY K A, DUFFY J, HAWLEY R H. Measurement of the temperature profile during shear band formation in steels deforming at high strain rates [J]. Journal of the Mechanics and Physics of Solids, 1987, 35(3): 283–301. DOI: 10.1016/0022-5096(87)90009-3.
    [15] DUFFY J, CHI Y C. On the measurement of local strain and temperature during the formation of adiabatic shear bands [J]. Materials Science and Engineering: A, 1992, 157(2): 195–210. DOI: 10.1016/0921-5093(92)90026-W.
    [16] ZHOU M, ROSAKIS A J, RAVICHANDRAN G. Dynamically propagating shear bands in impact-loaded prenotched plates: Ⅰ. experimental investigations of temperature signatures and propagation speed [J]. Journal of the Mechanics and Physics of Solids, 1996, 44(6): 981–1006. DOI: 10.1016/0022-5096(96)00003-8.
    [17] GUO Y Z, LI Y L. A novel approach to testing the dynamic shear response of Ti-6Al-4V [J]. Acta Mechanica Solida Sinica, 2012, 25(3): 299–311. DOI: 10.1016/S0894-9166(12)60027-5.
    [18] 付应乾, 董新龙. 帽型试样动态绝热剪切破坏演化分析 [J]. 固体力学学报, 2015, 36(5): 392–400. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004.

    FU Y Q, DONG X L. Study of evolution of adiabatic shear failure in hat-shaped specimen under dynamic loading [J]. Chinese Journal of Solid Mechanics, 2015, 36(5): 392–400. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2015.05.004.
    [19] GUO Y Z, RUAN Q C, ZHU S X, et al. Temperature rise associated with adiabatic shear band: causality clarified [J]. Physical Review Letters, 2019, 122(1): 015503. DOI: 10.1103/PhysRevLett.122.015503.
    [20] ZHU S X, GUO Y Z, CHEN H S, et al. Formation of adiabatic shear band within Ti-6Al-4V: effects of stress state [J]. Mechanics of Materials, 2019, 137: 103102. DOI: 10.1016/j.mechmat.2019.103102.
    [21] GUO Y Z, RUAN Q C, ZHU S X, et al. Dynamic failure of titanium: temperature rise and adiabatic shear band formation [J]. Journal of the Mechanics and Physics of Solids, 2020, 135: 103811. DOI: 10.1016/j.jmps.2019.103811.
    [22] RITTEL D, WANG Z G, MERZER M. Adiabatic shear failure and dynamic stored energy of cold work [J]. Physical Review Letters, 2006, 96(7): 075502. DOI: 10.1103/PhysRevLett.96.075502.
    [23] RITTEL D, LANDAU P, VENKERT A. Dynamic recrystallization as a potential cause for adiabatic shear failure [J]. Physical Review Letters, 2008, 101(16): 165501. DOI: 10.1103/PhysRevLett.101.165501.
    [24] OSOVSKI S, RITTEL D, LANDAU P, et al. Microstructural effects on adiabatic shear band formation [J]. Scripta Materialia, 2012, 66(1): 9–12. DOI: 10.1016/j.scriptamat.2011.09.014.
    [25] OSOVSKI S, RITTEL D, VENKERT A. The respective influence of microstructural and thermal softening on adiabatic shear localization [J]. Mechanics of Materials, 2013, 56: 11–22. DOI: 10.1016/j.mechmat.2012.09.008.
    [26] RITTEL D, OSOVSKI S. Dynamic failure by adiabatic shear banding [J]. International Journal of Fracture, 2010, 162(1/2): 177–185. DOI: 10.1007/s10704-010-9475-8.
    [27] 周刚毅, 董新龙, 付应乾. 动态帽型剪切试样分析及实验验证 [J]. 兵工学报, 2017, 38(12): 2455–2462. DOI: 10.3969/j.issn.1000-1093.2017.12.020.

    ZHOU G Y, DONG X L, FU Y Q. Analysis and experimental verification of dynamic shear test for hat-shaped specimen [J]. Acta Armamentarii, 2017, 38(12): 2455–2462. DOI: 10.3969/j.issn.1000-1093.2017.12.020.
    [28] XUE Q, MEYERS M A, NESTERENKO V F. Self-organization of shear bands in titanium and Ti-6Al-4V alloy [J]. Acta Materialia, 2002, 50(3): 575–596. DOI: 10.1016/s1359-6454(01)00356-1.
    [29] HE J Y, MA Y, YAN D S, et al. Improving ductility by increasing fraction of interfacial zone in low C steel/304 SS laminates [J]. Materials Science and Engineering: A, 2018, 726: 288–297. DOI: 10.1016/j.msea.2018.04.102.
  • 加载中
图(10)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  102
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 修回日期:  2022-05-15
  • 网络出版日期:  2022-06-06
  • 刊出日期:  2023-01-05

目录

    /

    返回文章
    返回