水下爆破冲击波作用下典型鱼类临界安全波压模型研究

李文杰 杨宵 万宇 杜洪波 肖毅 杨胜发

李文杰, 杨宵, 万宇, 杜洪波, 肖毅, 杨胜发. 水下爆破冲击波作用下典型鱼类临界安全波压模型研究[J]. 爆炸与冲击, 2023, 43(3): 034203. doi: 10.11883/bzycj-2022-0017
引用本文: 李文杰, 杨宵, 万宇, 杜洪波, 肖毅, 杨胜发. 水下爆破冲击波作用下典型鱼类临界安全波压模型研究[J]. 爆炸与冲击, 2023, 43(3): 034203. doi: 10.11883/bzycj-2022-0017
LI Wenjie, YANG Xiao, WAN Yu, DU Hongbo, XIAO Yi, YANG Shengfa. A critical safety wave pressure model of typical fishes under the action of underwater blasting shock waves[J]. Explosion And Shock Waves, 2023, 43(3): 034203. doi: 10.11883/bzycj-2022-0017
Citation: LI Wenjie, YANG Xiao, WAN Yu, DU Hongbo, XIAO Yi, YANG Shengfa. A critical safety wave pressure model of typical fishes under the action of underwater blasting shock waves[J]. Explosion And Shock Waves, 2023, 43(3): 034203. doi: 10.11883/bzycj-2022-0017

水下爆破冲击波作用下典型鱼类临界安全波压模型研究

doi: 10.11883/bzycj-2022-0017
基金项目: 重庆市自然科学基金(cstc2021jcyj-jqX0009, cstc2021jcyj-msxm2522)
详细信息
    作者简介:

    李文杰(1984- ),男,博士,教授,li_wj1984@163.com

    通讯作者:

    杜洪波(1994- ),男,博士,讲师,duhongbo@cqjtu.edu.cn

  • 中图分类号: O383.1

A critical safety wave pressure model of typical fishes under the action of underwater blasting shock waves

  • 摘要: 为了探究水下爆破冲击波对鱼类损伤的影响,首先通过理论分析探讨了水下冲击波在鱼体的传播过程和对鱼鳔的损伤机理,构建了典型有鳔鱼类临界安全波压模型,并结合实测数据、参考相关文献,确定了模型参数。结果表明,典型有鳔鱼类临界安全波压与鱼体长呈线性关系。其中,水介质和鱼鳔壁介质的波阻抗比、鱼鳔宽度因数、鱼鳔壁厚因数、鱼鳔径向临界拉应力因数和鱼鳔形状因数分别为0.3~2.0、0.04~0.09、0.002、60和0.6~1.1。然后,根据典型有鳔鱼类临界安全波压模型参数,得到最大和最小鱼类临界安全波压模型分别为pic,max=30Lpic,min=3Lpic,max的单位为kPa,L的单位为cm)。最后,通过鱼类损伤情况的实测数据和文献数据,验证了鱼类临界安全波压模型。结果表明,不同体长的鱼类在不同冲击波压力时的受损状况分布,基本与鱼类所能承受的最大和最小的临界安全波压范围符合。并根据鱼类临界安全波压与体长的关系,划分了死亡区、存活有影响区和存活无影响区。
  • 图  1  典型有鳔鱼类的临界安全波压物理模型

    Figure  1.  A physical model of critical safety wave pressure for a typical swim bladder fish

    图  2  鱼鳔长和鱼体长的关系

    Figure  2.  Relationships between the swim bladder length and fish body length

    图  3  鱼鳔宽和鱼鳔长的关系

    Figure  3.  Relationships between the swim bladder width and length

    图  4  鱼鳔壁厚和鱼体长的关系

    Figure  4.  Relationships between the swim bladder wall thickness and the fish body length

    图  5  鱼鳔径向临界拉应力和鱼体长的关系

    Figure  5.  Relationships between the critical radial tensile stress of the swim bladder and the length of the fish body

    图  6  测点布置

    Figure  6.  The measurement point arrangement

    图  7  典型有鳔鱼类临界安全波压模型的验证

    Figure  7.  Validation of the critical safety wave pressure model for typical swim bladder fishes

    表  1  临界安全波压模型相关参数的实测数据

    Table  1.   Measured parameters related to the critical safety wave pressure model

    鱼种类鱼体长/cm鱼鳔长/cm鱼鳔宽/cm鱼鳔高/cm鱼鳔壁厚/cm鱼鳔径向临界拉应力/kPa鱼鳔形状因数
    鲫鱼12.62.71.21.00.01415910.89
    14.52.81.31.20.01894230.95
    16.23.41.31.30.01644571.00
    19.43.41.31.10.01875230.90
    22.93.52.01.20.01916540.70
    24.63.62.11.70.01936280.87
    28.64.02.31.50.02328110.75
    31.54.62.42.20.025610210.95
    31.74.72.42.30.02609530.97
    35.55.63.21.80.028716250.67
    鲢鱼42.66.43.53.70.051811001.04
    46.37.73.83.30.059111600.91
    49.08.54.23.60.066012400.90
    51.58.83.82.40.070922100.73
    51.79.34.44.70.071822301.04
    56.410.24.22.10.075624400.61
    58.010.84.62.60.077125000.67
    59.311.24.73.60.081226600.84
    61.011.45.83.50.083234500.70
    63.111.95.93.20.082632100.65
    草鱼36.67.71.81.70.04768300.96
    38.08.22.01.10.050119600.66
    39.38.51.91.60.051413900.89
    39.59.92.22.00.058513400.94
    40.610.42.62.20.061414400.90
    41.011.02.21.70.053719600.84
    41.48.41.92.20.062118901.10
    50.212.12.32.30.077624301.00
    59.114.03.02.60.084225600.91
    60.114.43.22.10.071428400.75
    下载: 导出CSV

    表  2  有鳔鱼类的损伤

    Table  2.   Damages for swim bladder fishes

    鱼种类鱼体长/cm压力/kPa损伤结果判定结果
    草鱼30~4881鱼类存活,无变化鱼类存活,无影响
    6~15514鱼类存活,但行动迟缓鱼类存活,有影响
    鲢鱼15~30150鱼类存活,但行动迟缓鱼类存活,有影响
    16~35200060%受到严重损伤当即死亡,
    40%受到轻微损伤在爆破结束后一小时内逐渐死亡
    鱼类死亡
    青鱼、草鱼、鲢鱼、鳙鱼6~18706青鱼全部死亡,草鱼约75%死亡,鲢鱼和鳙鱼约50%死亡鱼类死亡
    鲫鱼[11]15~40927鱼类存活,但行动迟缓鱼类存活,有影响
    119333%鱼类死亡鱼类死亡
    2611鱼类全部死亡鱼类死亡
    下载: 导出CSV
  • [1] 张先炳, 杨胜发, 杨威, 等. 长江上游宜宾-江津与涪陵-丰都江段鱼类早期资源分布研究 [J]. 淡水渔业, 2021, 51(5): 51–59. DOI: 10.3969/j.issn.1000-6907.2021.05.007.

    ZHANG X B, YANG S F, YANG W, et al. The distribution of the early-stage fish resources between Yibin-Jiangjin and Fuling-Fengdu in the upper reaches of the Yangtze River [J]. Freshwater Fisheries, 2021, 51(5): 51–59. DOI: 10.3969/j.issn.1000-6907.2021.05.007.
    [2] 高天珩, 田辉伍, 叶超, 等. 长江上游珍稀特有鱼类国家级自然保护区干流段鱼类组成及其多样性 [J]. 淡水渔业, 2013, 43(2): 36–42. DOI: 10.3969/j.issn.1000-6907.2013.02.007.

    GAO T H, TIAN H W, YE C, et al. Diversity and composition of fish in the mainstream of national nature reserve of rare and endemic fish in the upper Yangtze River [J]. Freshwater Fisheries, 2013, 43(2): 36–42. DOI: 10.3969/j.issn.1000-6907.2013.02.007.
    [3] 段辛斌. 长江上游鱼类资源现状及早期资源调查研究 [D]. 武汉: 华中农业大学, 2008: 1−6. DOI: 10.7666/d.y1598376.
    [4] 喻灿星, 覃国杰, 曾丽. 内河航道水下炸礁钻孔爆破技术研究 [J]. 工程爆破, 2021, 27(4): 58–63. DOI: 10.19931/j.EB.20200273.

    YU C X, QIN G J, ZENG L. Research on technology of underwater reef drilling blasting in an inland waterway [J]. Engineering Blasting, 2021, 27(4): 58–63. DOI: 10.19931/j.EB.20200273.
    [5] 李金河, 赵继波, 谭多望, 等. 炸药水中爆炸的冲击波性能 [J]. 爆炸与冲击, 2009, 29(2): 172–176. DOI: 10.11883/1001-1455(2009)02-0172-05.

    LI J H, ZHAO J B, TAN D W, et al. Underwater shock wave performances of explosives [J]. Explosion and Shock Waves, 2009, 29(2): 172–176. DOI: 10.11883/1001-1455(2009)02-0172-05.
    [6] 赵根, 吴从清, 王文辉. 爆破水中冲击波对鱼类损伤研究 [J]. 工程爆破, 2011, 17(4): 103–105, 93. DOI: 10.3969/j.issn.1006-7051.2011.04.025.

    ZHAO G, WU C Q, WANG W H. Research on blasting shock wave in water to damage of fish [J]. Engineering Blasting, 2011, 17(4): 103–105, 93. DOI: 10.3969/j.issn.1006-7051.2011.04.025.
    [7] 李文涛, 张秀梅. 水下爆破施工对鱼类影响的估算及预防措施 [J]. 海洋科学, 2003, 27(11): 20–23. DOI: 10.3969/j.issn.1000-3096.2003.11.005.

    LI W T, ZHANG X M. Impact and mitigation measures for fish communities exposed to underwater explosion [J]. Marine Sciences, 2003, 27(11): 20–23. DOI: 10.3969/j.issn.1000-3096.2003.11.005.
    [8] 贾虎, 沈兆武. 空气隔层对水中冲击波的衰减特性 [J]. 爆炸与冲击, 2012, 32(1): 61–66. DOI: 10.11883/1001-1455(2012)01-0061-06.

    JIA H, SHEN Z W. An investigation into attenuation of underwater shockwave by air interlayer [J]. Explosion and Shock Waves, 2012, 32(1): 61–66. DOI: 10.11883/1001-1455(2012)01-0061-06.
    [9] 樊自建, 沈兆武, 马宏昊. 水中空气隔层对冲击波传播衰减作用的初步探讨 [J]. 工程爆破, 2007, 13(2): 7–10. DOI: 10.3969/j.issn.1006-7051.2007.02.002.

    FAN Z J, SHEN Z W, MA H H. Primary study on attenuation of underwater shock wave by using air insulation [J]. Engineering Blasting, 2007, 13(2): 7–10. DOI: 10.3969/j.issn.1006-7051.2007.02.002.
    [10] 徐爽, 赵宁, 王春武, 等. 水/气多介质问题的界面处理方法 [J]. 爆炸与冲击, 2015, 35(3): 326–334. DOI: 10.11883/1001-1455-(2015)03-0326-09.

    XU S, ZHAO N, WANG C W, et al. Interface treating methods for the gas-water multi-phase flows [J]. Explosion and Shock Waves, 2015, 35(3): 326–334. DOI: 10.11883/1001-1455-(2015)03-0326-09.
    [11] 尚龙生, 戴云丛, 刘现明, 等. 水中爆破对双台子河口渔场的影响 [J]. 海洋环境科学, 1994, 13(3): 23–26,32.
    [12] KEEVIN T M. A review of natural resource agency recommendations for mitigating the impacts of underwater blasting [J]. Reviews in Fisheries Science, 1998, 6(4): 281–313. DOI: 10.1080/10641269891314302.
    [13] 周杰, 陶钢, 王健. 爆炸冲击波对肺损伤的数值模拟 [J]. 爆炸与冲击, 2012, 32(4): 418–422. DOI: 10.11883/1001-1455(2012)04-0418-05.

    ZHOU J, TAO G, WANG J. Numerical simulation of lung injury induced by shock wave [J]. Explosion and Shock Waves, 2012, 32(4): 418–422. DOI: 10.11883/1001-1455(2012)04-0418-05.
    [14] WIERNICKI C J, LIANG D, BAILEY H, et al. The effect of swim bladder presence and morphology on sound frequency detection for fishes [J]. Reviews in Fisheries Science & Aquaculture, 2020, 28(4): 459–477. DOI: 10.1080/23308249.2020.1762536.
    [15] HALVORSEN M B, CASPER B M, WOODLEY C M, et al. Threshold for onset of injury in Chinook salmon from exposure to impulsive pile driving sounds [J]. PLoS One, 2012, 7(6): e38968. DOI: 10.1371/journal.pone.0038968.
    [16] 杨志焕, 朱佩芳, 蒋建新, 等. 水下冲击波的生物效应 [J]. 爆炸与冲击, 2003, 23(2): 134–139.

    YANG Z H, ZHU P F, JIANG J X, et al. Bio-effects of underwater blast waves [J]. Explosion and Shock Waves, 2003, 23(2): 134–139.
    [17] 中华人民共和国国家标准编写组. 爆破安全规程: GB 6722—2014 [S]. 北京: 中国标准出版社, 2015.
    [18] 孙玉. 声阻抗梯度变化材料中声传播特性研究 [D]. 黑龙江: 哈尔滨工程大学, 2015: 91–107. DOI: 10.7666/d.D749650.
    [19] 杜伟东, 李海森, 陈宝伟, 等. 一种基于声散射特性的有鳔鱼特征获取方法 [J]. 应用声学, 2014, 33(6): 505–511. DOI: 10.11684/j.issn.1000-310X.2014.06.005.

    DU W D, LI H S, CHEN B W, et al. Features acquisition of fish with swim bladder based on acoustic scattering characteristics [J]. Journal of Applied Acoustics, 2014, 33(6): 505–511. DOI: 10.11684/j.issn.1000-310X.2014.06.005.
    [20] 李鑫. 鱼鳔作为新型心血管外科手术生物材料的试验研究 [D]. 上海: 第二军医大学, 2013: 1–32. DOI: 10.7666/d.Y2339973.
    [21] 张更申, 张庆俊, 孙国柱, 等. 应用鲤鱼鳔进行家兔硬脑膜修补术实验研究 [J]. 河北医科大学学报, 2000, 21(6): 337–340. DOI: 10.3969/j.issn.1007-3205.2000.06.006.

    ZHANG Q S, ZHANG Q J, SUN G Z, et al. Experimental duraplasty with carp swim-bladder in rabbits [J]. Journal of Hebei Medical University, 2000, 21(6): 337–340. DOI: 10.3969/j.issn.1007-3205.2000.06.006.
    [22] FINE M L, KING T L, ALI H, et al. Wall structure and material properties cause viscous damping of swimbladder sounds in the oyster toadfish Opsanus tau [J]. Proceedings of the Royal Society B: Biological Sciences, 2016, 283(1841): 20161094. DOI: 10.1098/rspb.2016.1094.
    [23] SOBRADILLO B, BOYRA G, MARTINEZ U, et al. Target strength and swimbladder morphology of Mueller’s pearlside (Maurolicus muelleri) [J]. Scientific Reports, 2019, 9(1): 17311. DOI: 10.1038/s41598-019-53819-6.
    [24] 李彬寒. 鱼鳔源抗钙化心血管生物材料的研究 [D]. 北京: 北京协和医学院, 2020: 48–59. DOI: 10.27648/d.cnki.gzxhu.2020.000519.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  918
  • HTML全文浏览量:  167
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 修回日期:  2022-04-15
  • 网络出版日期:  2022-04-22
  • 刊出日期:  2023-03-05

目录

    /

    返回文章
    返回