• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

超高车辆与箱梁立交桥碰撞简化计算模型评估分析

郭玉旭 席丰 谭英华 胡亚超 刘锋

郭玉旭, 席丰, 谭英华, 胡亚超, 刘锋. 超高车辆与箱梁立交桥碰撞简化计算模型评估分析[J]. 爆炸与冲击, 2023, 43(3): 033302. doi: 10.11883/bzycj-2022-0029
引用本文: 郭玉旭, 席丰, 谭英华, 胡亚超, 刘锋. 超高车辆与箱梁立交桥碰撞简化计算模型评估分析[J]. 爆炸与冲击, 2023, 43(3): 033302. doi: 10.11883/bzycj-2022-0029
LiYi-min, GaoZheng-guo, ZhuQing-qing, HuangXiao-bo, HuangXi. An experimental investigation into effects of blast-induced vibration on strength of early-age concrete[J]. Explosion And Shock Waves, 2013, 33(3): 243-248. doi: 10.11883/1001-1455(2013)03-0243-06
Citation: GUO Yuxu, XI Feng, TAN Yinghua, HU Yachao, LIU Feng. Analysis on assessment of simplified compuational models for collision of over-height vehicles with box-girder flyovers[J]. Explosion And Shock Waves, 2023, 43(3): 033302. doi: 10.11883/bzycj-2022-0029

超高车辆与箱梁立交桥碰撞简化计算模型评估分析

doi: 10.11883/bzycj-2022-0029
基金项目: 国家自然科学基金(12172198,52078283)
详细信息
    作者简介:

    郭玉旭 (1997- ),男,博士研究生,yxg1997@stu.cqu.edu.cn

    通讯作者:

    席 丰 (1963- ),男,博士,教授,博士生导师,xifeng@sdjzu.edu.cn

  • 中图分类号: O389; U447

Analysis on assessment of simplified compuational models for collision of over-height vehicles with box-girder flyovers

  • 摘要: 为了考察受超高车辆撞击装配式钢筋混凝土箱梁跨线桥的冲击动力和破坏行为,以一起近来发生的实际工程事故为案例进行精化有限元数值分析,并提出了双质量-并联弹簧(double mass-parallel spring, DM-PS)简化车辆模型,以有效地模拟超高车辆与桥梁的非对心碰撞行为。所建议DM-PS简化模型的有效性通过与两种广泛使用的车辆模型包括全尺(full scale, FS)模型和简单刚体(simple rigid, SR)模型的比较而得到充分地评估。计算结果表明:采用FS模型可得到与事故现场照片基本一致的跨线桥撞击区域破坏特征;SR模型高估结构的局部破坏,弱化结构的整体变形;DM-PS模型对于预测结构破坏具有较高的准确性。因此,所提出的DM-PS模型为超高车辆撞击桥梁结构防护设计提供了一个简单有效的分析手段。在此基础上,利用DM-PS模型进行了详细的结构行为参数分析,深入考察了车辆撞击速度、撞击质量、撞击位置以及结构形式等效应。所得到的结论为:相比撞击质量,结构的冲击动力行为对于撞击速度有更高的敏感性;跨中受撞和边跨受撞的变形和破坏模式有较大差异,边跨受撞对于单侧支座损伤更严重;箱梁内的箱板以及底板可以有效提高结构的抗冲击性能。
  • 图  1  车辆和箱桥结构

    Figure  1.  Vehicle and box-girder bridge structure

    图  2  桥梁有限元模型

    Figure  2.  A finite-element model of the bridge

    图  3  全尺寸车辆有限元模型

    Figure  3.  A full-scale (FS) vehicle finite-element (FE) model

    图  4  SR车辆模型

    Figure  4.  A simple-rigid (SR) vehicle model

    图  5  DM-PS车辆模型

    Figure  5.  DM-PS vehicle model

    图  6  混凝土单轴应力-应变曲线

    Figure  6.  Uniaxial stress-strain curves of concrete

    图  7  单元尺寸敏感性

    Figure  7.  Sensitivity to element size

    图  8  受撞击区域的破坏面对比

    Figure  8.  Failure comparison at collision area

    图  9  受撞击正面损伤云图

    Figure  9.  Damage contour of collision frontal

    图  10  桥面法向位移与切向位移

    Figure  10.  Normal and tangential displacement of the bridge deck

    图  11  不同瞬时箱梁结构损伤云图

    Figure  11.  Box girder damage contours at different instants

    图  12  SR模型计算结果

    Figure  12.  Simulation results by using the SR model

    图  13  DM-PS模型计算结果

    Figure  13.  Simulation results by using the DM-PS model

    图  14  能量分布对比

    Figure  14.  Comparison of energy distribution

    图  15  撞击力时程曲线对比

    Figure  15.  Comparison of collision force-time history curves

    图  16  具有加强底板的箱梁有限元模型

    Figure  16.  Box girder FE model with reinforced plate

    图  17  车辆质量和速度对破坏深度的影响

    Figure  17.  Effect of mass and velocity of vehicles on failure depth

    图  18  撞击力时程曲线

    Figure  18.  Collision force-time history curves

    图  19  桥体特征位移与支座损伤分析

    Figure  19.  Bridge characteristic displacement and base failure analysis

    图  20  受撞击正面SDEG云图

    Figure  20.  SDEG contours of collision frontal

    图  21  桥面损伤和结构破坏

    Figure  21.  Damage of the bridge deck and structural failure

    图  22  有无加强底板的结构破坏

    Figure  22.  Structural failure with or without reinforced plate

    图  23  桥面切向位移对比

    Figure  23.  Comparison of tangential displacement

    图  24  撞击后结构转角

    Figure  24.  Structural rotation angle after collision

    图  25  不同工况撞击后的结构转角

    Figure  25.  Structural rotation angles after collision under different working conditions

    图  26  不同工况下的混凝土破坏深度

    Figure  26.  Concrete failure depths after collision under different working conditions

    表  1  单元数目及类型

    Table  1.   Number and type of elements

    项目单元数目尺寸/mm单元类型
    桥体2 324 62450C3D8R
    箱板 177 12820C3D8R
    支座 3 36820C3D8R
    钢筋 108 64250B31
    地面 1 296500 R3D4
    下载: 导出CSV

    表  2  模型工况

    Table  2.   Model working conditions

    模型M/tvo/(m·s−1)箱梁类型-X撞击位置-Y
    M-vo-XY34/44/5415/20/25无底板/有底板跨中/边跨
    下载: 导出CSV
  • [1] HU Y C, TAN Y H, XI F. Failure assessment and virtual scenario reproduction of the progressive collapse of the FIU bridge [J]. Engineering Structures, 2021, 227: 111423. DOI: 10.1016/j.engstruct.2020.111423.
    [2] BUTH C E, BRACKIN M S, WILLIAMS W F, et al. Collision loads on bridge piers: phase 2. report of guidelines for designing bridge piers and abutments for vehicle collisions: 9-4973-2 [R]. Texas, USA: Texas Transportation Institute, 2011.
    [3] 田力, 冯振宁. 超高车辆撞击预应力箱型梁桥上部结构的动态响应 [J]. 西南交通大学学报, 2016, 51(4): 632–638. DOI: 10.3969/j.issn.0258-2724.2016.04.005.

    TIAN L, FENG Z N. Dynamic response of superstructure of prestressed box-girder bridge to over-high truck impact [J]. Journal of Southwest Jiaotong University, 2016, 51(4): 632–638. DOI: 10.3969/j.issn.0258-2724.2016.04.005.
    [4] OZDAGLI A I, MOREU F, XU D, et al. Experimental analysis on effectiveness of crash beams for impact attenuation of overheight vehicle collisions on railroad bridges [J]. Journal of Bridge Engineering, 2020, 25(1): 04019133. DOI: 10.1061/(ASCE)BE.1943-5592.0001503.
    [5] XU L J, LU X Z, GUAN H, et al. Finite-element and simplified models for collision simulation between overheight trucks and bridge superstructures [J]. Journal of Bridge Engineering, 2013, 18(11): 1140–1151. DOI: 10.1061/(ASCE)BE.1943-5592.0000472.
    [6] AL-THAIRY H, WANG Y C. A simplified analytical method for predicting the critical velocity of vehicle impact on steel columns [J]. Journal of Constructional Steel Research, 2014, 92: 136–149. DOI: 10.1016/j.jcsr.2013.10.014.
    [7] 陆新征, 卢啸, 张炎圣, 等. 超高车辆-桥梁上部结构撞击力的工程计算方法 [J]. 中国公路学报, 2011, 24(2): 49–55. DOI: 10.19721/j.cnki.1001-7372.2011.02.009.

    LU X Z, LU X, ZHANG Y S, et al. Engineering calculation method for collision force between over-height truck and bridge superstructure [J]. China Journal of Highway and Transport, 2011, 24(2): 49–55. DOI: 10.19721/j.cnki.1001-7372.2011.02.009.
    [8] HENG K, LI R W, LI Z R, et al. Dynamic responses of highway bridge subjected to heavy truck impact [J]. Engineering Structures, 2021, 232: 111828. DOI: 10.1016/j.engstruct.2020.111828.
    [9] 陆新征, 何水涛, 黄圣楠. 超高车辆撞击桥梁上部结构研究: 破坏机理, 设计方法和防护对策 [M]. 北京: 中国建筑工业出版社, 2011: 54–55.
    [10] GORST N J S, WILLIAMSON S J, PALLETT P F, et al. Friction in temporary works: 071 [R]. Birmingham, UK: Health and Safety Executive, 2003.
    [11] LI X X. Parametric study on numerical simulation of missile punching test using concrete damaged plasticity (CDP) model [J]. International Journal of Impact Engineering, 2020, 144: 103652. DOI: 10.1016/j.ijimpeng.2020.103652.
    [12] ABAQUS Inc. ABAQUS analysis user’s manual [Z]. ABAQUS Inc., 2021.
    [13] 张帝, 杨军, 曾丹, 等. 钢筋混凝土排架结构的抗爆破坏等级 [J]. 爆炸与冲击, 2020, 40(12): 121405. DOI: 10.11883/bzycj-2020-0012.

    ZHANG D, YANG J, ZENG D, et al. Damage grades of reinforced concrete bent structures against blast [J]. Explosion and Shock Waves, 2020, 40(12): 121405. DOI: 10.11883/bzycj-2020-0012.
    [14] LI X X L, WANG C, SATO J. Framework for dynamic analysis of radioactive material transport packages under accident drop conditions [J]. Nuclear Engineering and Design, 2020, 360: 110480. DOI: 10.1016/j.nucengdes.2019.110480.
    [15] 庄茁, 张帆, 岑松, 等. ABAQUS非线性有限元分析与实例 [M]. 北京: 科学出版社, 2005: 110–115.
  • 期刊类型引用(20)

    1. 党发宁,王宝生,李玉涛,任劼,方建银. 冲击速度及骨料率对混凝土动强度的影响研究. 西安建筑科技大学学报(自然科学版). 2024(01): 7-13+22 . 百度学术
    2. 熊凌浩,周传波,蒋楠,王腾,蒙贤忠. 大断面隧道新浇二衬混凝土爆破振动控制安全阈值. 工程爆破. 2023(01): 1-9 . 百度学术
    3. 庄金平,任凯,杨尊煌. 早龄期持续受荷对成熟混凝土梁受弯性能影响试验研究. 混凝土. 2023(11): 49-52+57 . 百度学术
    4. 王亚强,李二宝,王骞,漆斌,汪熙,杨海涛. 爆破振动对混凝土初凝期强度影响规律及降震试验研究. 中国矿业. 2022(03): 124-130 . 百度学术
    5. 潘长春. 基于爆破振动的新浇混凝土现行安全标准探讨. 科技创新与应用. 2021(08): 75-77+81 . 百度学术
    6. 缪琪,赵章华,俞海杰,孙旭峰. 水厂新浇构筑物在基坑爆破时的抗裂性能研究. 山西建筑. 2021(20): 40-43 . 百度学术
    7. 谢立栋,东兆星,姜慧,朱炯,齐燕军. 早龄期混凝土动强度应变率系数的统计方法. 兵工学报. 2021(S1): 159-166 . 百度学术
    8. 陈秋南,贺泳超,邹根,李君杰,周相识,周光裕. 爆破施工对隧道二衬结构影响的试验研究. 铁道科学与工程学报. 2020(03): 676-681 . 百度学术
    9. 杨小林,刘宝,吴礼报. 振动荷载作用下新浇混凝土损伤累积规律试验研究. 混凝土. 2020(09): 27-30+36 . 百度学术
    10. 叶红宇,杨小林,卓越. 基于损伤累积的爆破振动主频衰减规律试验研究. 矿业研究与开发. 2019(04): 92-96 . 百度学术
    11. 杨小林,李拴杰,褚怀保,姚智慧,杨杰,刘宝. 多次振动荷载作用下新浇混凝土超声波波速变化规律试验研究. 河南理工大学学报(自然科学版). 2018(03): 124-128 . 百度学术
    12. 褚怀保,杨小林,叶红宇,梁为民,余永强,魏海霞. 隧道衬砌混凝土爆破损伤累积规律试验研究. 铁道学报. 2018(03): 132-136 . 百度学术
    13. 褚怀保,吴礼报,杨小林. 振动荷载作用对新浇混凝土强度与耐久性影响试验研究. 硅酸盐通报. 2018(09): 2919-2923 . 百度学术
    14. 褚怀保,杨小林,叶红宇,吴礼报. 新浇混凝土爆破振动损伤累积规律模拟试验研究. 煤炭学报. 2018(09): 2469-2475 . 百度学术
    15. 张宏兵. 面向爆破应力波小净距隧道混凝土安全振动标准研究. 湖南交通科技. 2017(03): 180-184 . 百度学术
    16. 潘慧敏,赵庆新,付军. 早龄期混凝土受扰性能研究进展. 硅酸盐通报. 2017(01): 64-70 . 百度学术
    17. 褚怀保,吴礼报,杨小林,叶红宇,李栓杰,赵禹. 新浇混凝土爆破振动损伤累积机制试验研究. 中国安全科学学报. 2017(09): 69-73 . 百度学术
    18. 吴帅峰,王戈,袁东凯,刘殿书. 爆破振动对新浇混凝土影响的试验研究. 振动与冲击. 2017(02): 39-44+88 . 百度学术
    19. 戴思南,吴新霞,李广平. 结构尺寸与龄期对混凝土爆破振动响应的影响. 爆破. 2015(01): 131-134+150 . 百度学术
    20. 罗福友,邱子华,周浩仓,潘昌义,罗福龙,杨康. 沟槽爆破参数优化及成本分析. 江西理工大学学报. 2015(03): 58-63 . 百度学术

    其他类型引用(12)

  • 加载中
图(26) / 表(2)
计量
  • 文章访问数:  703
  • HTML全文浏览量:  246
  • PDF下载量:  174
  • 被引次数: 32
出版历程
  • 收稿日期:  2022-01-19
  • 修回日期:  2022-05-27
  • 网络出版日期:  2022-06-01
  • 刊出日期:  2023-03-05

目录

    /

    返回文章
    返回