Analysis on assessment of simplified compuational models for collision of over-height vehicles with box-girder flyovers
-
摘要: 为了考察受超高车辆撞击装配式钢筋混凝土箱梁跨线桥的冲击动力和破坏行为,以一起近来发生的实际工程事故为案例进行精化有限元数值分析,并提出了双质量-并联弹簧(double mass-parallel spring, DM-PS)简化车辆模型,以有效地模拟超高车辆与桥梁的非对心碰撞行为。所建议DM-PS简化模型的有效性通过与两种广泛使用的车辆模型包括全尺(full scale, FS)模型和简单刚体(simple rigid, SR)模型的比较而得到充分地评估。计算结果表明:采用FS模型可得到与事故现场照片基本一致的跨线桥撞击区域破坏特征;SR模型高估结构的局部破坏,弱化结构的整体变形;DM-PS模型对于预测结构破坏具有较高的准确性。因此,所提出的DM-PS模型为超高车辆撞击桥梁结构防护设计提供了一个简单有效的分析手段。在此基础上,利用DM-PS模型进行了详细的结构行为参数分析,深入考察了车辆撞击速度、撞击质量、撞击位置以及结构形式等效应。所得到的结论为:相比撞击质量,结构的冲击动力行为对于撞击速度有更高的敏感性;跨中受撞和边跨受撞的变形和破坏模式有较大差异,边跨受撞对于单侧支座损伤更严重;箱梁内的箱板以及底板可以有效提高结构的抗冲击性能。
-
关键词:
- 车辆撞击 /
- 钢筋混凝土结构 /
- 结构破坏 /
- 双质量-并联弹簧车辆模型
Abstract: To investigate the dynamical responses and failure behaviors of prefabricated reinforced-concrete (RC) box-girder flyovers caused by collision of over-height vehicles, a recent actual engineering accident is taken as an example to carry out refined numerical analysis by the finite element method, and a double mass-parallel spring (DM-PS) simplified vehicle model is proposed to effectively simulate the eccentric collision between the over-height vehicle and bridge superstructures. The effectiveness of the proposed DM-PS model is fully assessed through comparison with two widely-employed vehicle models, i.e., a full-scale (FS) model and a simple rigid (SR) model. The comparisons display that the failure characteristics of the collision area can be obtained by using the FS model, which is basically consistent with the photos of the accident scene; the SR model overestimates the local damage of the structure and underestimates the overall structural deformation; while the DM-PS model has high accuracy for predicting the structural failure. Therefore, the proposed DM-PS model can provide a simple and effective analysis tool for the protection design of bridge structures subjected to over-height vehicle collision. On this basis, a detailed parameter analysis of the structural behaviors is carried out by the DM-PS model, and the effects of vehicle collision velocity, mass, position, and structural form are investigated in depth. It is shown that the structural sensitivity of the impact dynamic behavior to the collision velocity of the vehicle is significantly greater than that of the collision mass of the vehicle; the deformation and failure modes of mid-span collision and side-span collision are quite different, and the damage of side-span collision to one side base is more serious; the box plate and reinforced plate in the box girder can effectively improve the structural impact resistance. Numerical results and conclusions can provide a reference for the crashworthiness design of bridges. The critical information of the finite element analysis process is presented in detail. -
表 1 单元数目及类型
Table 1. Number and type of elements
项目 单元数目 尺寸/mm 单元类型 桥体 2 324 624 50 C3D8R 箱板 177 128 20 C3D8R 支座 3 368 20 C3D8R 钢筋 108 642 50 B31 地面 1 296 500 R3D4 表 2 模型工况
Table 2. Model working conditions
模型 M/t vo/(m·s−1) 箱梁类型-X 撞击位置-Y M-vo-XY 34/44/54 15/20/25 无底板/有底板 跨中/边跨 -
[1] HU Y C, TAN Y H, XI F. Failure assessment and virtual scenario reproduction of the progressive collapse of the FIU bridge [J]. Engineering Structures, 2021, 227: 111423. DOI: 10.1016/j.engstruct.2020.111423. [2] BUTH C E, BRACKIN M S, WILLIAMS W F, et al. Collision loads on bridge piers: phase 2. report of guidelines for designing bridge piers and abutments for vehicle collisions: 9-4973-2 [R]. Texas, USA: Texas Transportation Institute, 2011. [3] 田力, 冯振宁. 超高车辆撞击预应力箱型梁桥上部结构的动态响应 [J]. 西南交通大学学报, 2016, 51(4): 632–638. DOI: 10.3969/j.issn.0258-2724.2016.04.005.TIAN L, FENG Z N. Dynamic response of superstructure of prestressed box-girder bridge to over-high truck impact [J]. Journal of Southwest Jiaotong University, 2016, 51(4): 632–638. DOI: 10.3969/j.issn.0258-2724.2016.04.005. [4] OZDAGLI A I, MOREU F, XU D, et al. Experimental analysis on effectiveness of crash beams for impact attenuation of overheight vehicle collisions on railroad bridges [J]. Journal of Bridge Engineering, 2020, 25(1): 04019133. DOI: 10.1061/(ASCE)BE.1943-5592.0001503. [5] XU L J, LU X Z, GUAN H, et al. Finite-element and simplified models for collision simulation between overheight trucks and bridge superstructures [J]. Journal of Bridge Engineering, 2013, 18(11): 1140–1151. DOI: 10.1061/(ASCE)BE.1943-5592.0000472. [6] AL-THAIRY H, WANG Y C. A simplified analytical method for predicting the critical velocity of vehicle impact on steel columns [J]. Journal of Constructional Steel Research, 2014, 92: 136–149. DOI: 10.1016/j.jcsr.2013.10.014. [7] 陆新征, 卢啸, 张炎圣, 等. 超高车辆-桥梁上部结构撞击力的工程计算方法 [J]. 中国公路学报, 2011, 24(2): 49–55. DOI: 10.19721/j.cnki.1001-7372.2011.02.009.LU X Z, LU X, ZHANG Y S, et al. Engineering calculation method for collision force between over-height truck and bridge superstructure [J]. China Journal of Highway and Transport, 2011, 24(2): 49–55. DOI: 10.19721/j.cnki.1001-7372.2011.02.009. [8] HENG K, LI R W, LI Z R, et al. Dynamic responses of highway bridge subjected to heavy truck impact [J]. Engineering Structures, 2021, 232: 111828. DOI: 10.1016/j.engstruct.2020.111828. [9] 陆新征, 何水涛, 黄圣楠. 超高车辆撞击桥梁上部结构研究: 破坏机理, 设计方法和防护对策 [M]. 北京: 中国建筑工业出版社, 2011: 54–55. [10] GORST N J S, WILLIAMSON S J, PALLETT P F, et al. Friction in temporary works: 071 [R]. Birmingham, UK: Health and Safety Executive, 2003. [11] LI X X. Parametric study on numerical simulation of missile punching test using concrete damaged plasticity (CDP) model [J]. International Journal of Impact Engineering, 2020, 144: 103652. DOI: 10.1016/j.ijimpeng.2020.103652. [12] ABAQUS Inc. ABAQUS analysis user’s manual [Z]. ABAQUS Inc., 2021. [13] 张帝, 杨军, 曾丹, 等. 钢筋混凝土排架结构的抗爆破坏等级 [J]. 爆炸与冲击, 2020, 40(12): 121405. DOI: 10.11883/bzycj-2020-0012.ZHANG D, YANG J, ZENG D, et al. Damage grades of reinforced concrete bent structures against blast [J]. Explosion and Shock Waves, 2020, 40(12): 121405. DOI: 10.11883/bzycj-2020-0012. [14] LI X X L, WANG C, SATO J. Framework for dynamic analysis of radioactive material transport packages under accident drop conditions [J]. Nuclear Engineering and Design, 2020, 360: 110480. DOI: 10.1016/j.nucengdes.2019.110480. [15] 庄茁, 张帆, 岑松, 等. ABAQUS非线性有限元分析与实例 [M]. 北京: 科学出版社, 2005: 110–115. 期刊类型引用(20)
1. 党发宁,王宝生,李玉涛,任劼,方建银. 冲击速度及骨料率对混凝土动强度的影响研究. 西安建筑科技大学学报(自然科学版). 2024(01): 7-13+22 . 百度学术
2. 熊凌浩,周传波,蒋楠,王腾,蒙贤忠. 大断面隧道新浇二衬混凝土爆破振动控制安全阈值. 工程爆破. 2023(01): 1-9 . 百度学术
3. 庄金平,任凯,杨尊煌. 早龄期持续受荷对成熟混凝土梁受弯性能影响试验研究. 混凝土. 2023(11): 49-52+57 . 百度学术
4. 王亚强,李二宝,王骞,漆斌,汪熙,杨海涛. 爆破振动对混凝土初凝期强度影响规律及降震试验研究. 中国矿业. 2022(03): 124-130 . 百度学术
5. 潘长春. 基于爆破振动的新浇混凝土现行安全标准探讨. 科技创新与应用. 2021(08): 75-77+81 . 百度学术
6. 缪琪,赵章华,俞海杰,孙旭峰. 水厂新浇构筑物在基坑爆破时的抗裂性能研究. 山西建筑. 2021(20): 40-43 . 百度学术
7. 谢立栋,东兆星,姜慧,朱炯,齐燕军. 早龄期混凝土动强度应变率系数的统计方法. 兵工学报. 2021(S1): 159-166 . 百度学术
8. 陈秋南,贺泳超,邹根,李君杰,周相识,周光裕. 爆破施工对隧道二衬结构影响的试验研究. 铁道科学与工程学报. 2020(03): 676-681 . 百度学术
9. 杨小林,刘宝,吴礼报. 振动荷载作用下新浇混凝土损伤累积规律试验研究. 混凝土. 2020(09): 27-30+36 . 百度学术
10. 叶红宇,杨小林,卓越. 基于损伤累积的爆破振动主频衰减规律试验研究. 矿业研究与开发. 2019(04): 92-96 . 百度学术
11. 杨小林,李拴杰,褚怀保,姚智慧,杨杰,刘宝. 多次振动荷载作用下新浇混凝土超声波波速变化规律试验研究. 河南理工大学学报(自然科学版). 2018(03): 124-128 . 百度学术
12. 褚怀保,杨小林,叶红宇,梁为民,余永强,魏海霞. 隧道衬砌混凝土爆破损伤累积规律试验研究. 铁道学报. 2018(03): 132-136 . 百度学术
13. 褚怀保,吴礼报,杨小林. 振动荷载作用对新浇混凝土强度与耐久性影响试验研究. 硅酸盐通报. 2018(09): 2919-2923 . 百度学术
14. 褚怀保,杨小林,叶红宇,吴礼报. 新浇混凝土爆破振动损伤累积规律模拟试验研究. 煤炭学报. 2018(09): 2469-2475 . 百度学术
15. 张宏兵. 面向爆破应力波小净距隧道混凝土安全振动标准研究. 湖南交通科技. 2017(03): 180-184 . 百度学术
16. 潘慧敏,赵庆新,付军. 早龄期混凝土受扰性能研究进展. 硅酸盐通报. 2017(01): 64-70 . 百度学术
17. 褚怀保,吴礼报,杨小林,叶红宇,李栓杰,赵禹. 新浇混凝土爆破振动损伤累积机制试验研究. 中国安全科学学报. 2017(09): 69-73 . 百度学术
18. 吴帅峰,王戈,袁东凯,刘殿书. 爆破振动对新浇混凝土影响的试验研究. 振动与冲击. 2017(02): 39-44+88 . 百度学术
19. 戴思南,吴新霞,李广平. 结构尺寸与龄期对混凝土爆破振动响应的影响. 爆破. 2015(01): 131-134+150 . 百度学术
20. 罗福友,邱子华,周浩仓,潘昌义,罗福龙,杨康. 沟槽爆破参数优化及成本分析. 江西理工大学学报. 2015(03): 58-63 . 百度学术
其他类型引用(12)
-