混凝土中爆炸应力波衰减规律的数值模拟研究

高矗 孔祥振 方秦 王银 杨亚

高矗, 孔祥振, 方秦, 王银, 杨亚. 混凝土中爆炸应力波衰减规律的数值模拟研究[J]. 爆炸与冲击, 2022, 42(12): 123202. doi: 10.11883/bzycj-2022-0041
引用本文: 高矗, 孔祥振, 方秦, 王银, 杨亚. 混凝土中爆炸应力波衰减规律的数值模拟研究[J]. 爆炸与冲击, 2022, 42(12): 123202. doi: 10.11883/bzycj-2022-0041
GAO Chu, KONG Xiangzhen, FANG Qin, WANG Yin, YANG Ya. Numerical study on attenuation of stress wave in concrete subjected to explosion[J]. Explosion And Shock Waves, 2022, 42(12): 123202. doi: 10.11883/bzycj-2022-0041
Citation: GAO Chu, KONG Xiangzhen, FANG Qin, WANG Yin, YANG Ya. Numerical study on attenuation of stress wave in concrete subjected to explosion[J]. Explosion And Shock Waves, 2022, 42(12): 123202. doi: 10.11883/bzycj-2022-0041

混凝土中爆炸应力波衰减规律的数值模拟研究

doi: 10.11883/bzycj-2022-0041
基金项目: 国家自然科学基金(52178515)
详细信息
    作者简介:

    高 矗(1988- ),男,博士研究生,讲师,gaochu0617@163.com

    通讯作者:

    孔祥振(1988- ),男,博士,副教授,ouckxz@163.com

  • 中图分类号: O382

Numerical study on attenuation of stress wave in concrete subjected to explosion

  • 摘要: 基于Kong-Fang混凝土材料模型和LS-DYNA的多物质ALE算法,开展混凝土中爆炸波衰减规律的数值模拟研究。首先,基于已有实验数据对材料模型参数和数值算法的可靠性进行了验证,在此基础上分析球形装药在混凝土自由场中爆炸波衰减规律,利用量纲分析和数值模拟拟合了球形装药在混凝土自由场中近区爆炸波峰值应力计算公式并明确其适用范围;然后,分析装药埋深对混凝土中装药正下方不同距离处爆炸波峰值应力分布的影响,建立了耦合系数与装药埋深和测点距离之间的定量关系。结果表明:Kong-Fang混凝土材料模型可实现对混凝土中爆炸波传播衰减规律的高精度数值模拟;定义混凝土中装药质量系数和耦合常数,可定量描述装药埋深和测点距离对峰值应力耦合系数的影响;建立的混凝土中近区爆炸波峰值应力计算公式可较准确地快速预测不同装药埋深、不同测点距离和不同混凝土强度时爆炸波峰值应力。研究结果可为混凝土结构抗爆设计和爆炸毁伤评估提供参考。
  • 图  1  WES5000混凝土的状态方程

    Figure  1.  Equation of state for WES5000 concrete

    图  2  WES5000混凝土的强度面参数

    Figure  2.  Failure surface parameters for WES5000 concrete

    图  3  C100混凝土的状态方程[15]

    Figure  3.  Equation of state for C100 concrete[15]

    图  4  C100混凝土的强度面参数

    Figure  4.  Failure surface parameters for C100 concrete

    图  5  实验示意图[2]

    Figure  5.  Schematic diagram of the experiment[2]

    图  6  实验的有限元模型

    Figure  6.  The finite element model for the experiment

    图  7  不同网格尺寸的压力曲线

    Figure  7.  Pressure curves under different mesh sizes

    图  8  爆炸波峰值应力随距离的变化

    Figure  8.  Variation of explosion wave peak stress with distances

    图  9  不同距离处的应力曲线

    Figure  9.  Stress curves at different distances

    图  10  比例距离0.06~0.20 m/kg1/3时的应力曲线

    Figure  10.  Stress curves at the scaled distances 0.06−0.20 m/kg1/3

    图  11  WES5000混凝土靶体损伤的数值模拟结果

    Figure  11.  Simulation results for WES5000 concrete target damage

    图  12  比例距离0.25~0.60 m/kg1/3时的应力曲线

    Figure  12.  Stress curves at the scaled distances 0.25−0.60 m/kg1/3

    图  13  比例距离0.70~1.60 m/kg1/3时的应力曲线

    Figure  13.  Stress curves at the scaled distances 0.70−1.60 m/kg1/3

    图  14  爆炸空腔周围混凝土介质的变形区域

    Figure  14.  Deformation zones of concrete around the blasting cavity

    图  15  爆炸波峰值应力随距离的变化

    Figure  15.  Variations of explosion wave peak stress with distance

    图  16  不同埋深时WES5000混凝土的爆炸波峰值应力随距离的变化

    Figure  16.  Variations of explosion wave peak stress for WES5000 concrete with distance at different burial depths

    图  17  不同埋深时WES5000混凝土峰值应力耦合系数随距离的变化

    Figure  17.  Variations of peak stress coupling coefficient for WES5000 concrete with distance at different burial depths

    图  18  峰值应力耦合系数随距离的变化规律

    Figure  18.  Variety rule of peak stress coupling coefficient with distance

    图  19  稳定峰值应力耦合系数随质量系数的变化

    Figure  19.  Variation of stable peak stress coupling coefficient with mass coefficient

    图  20  WES5000和C100混凝土的峰值应力耦合系数随距离的变化

    Figure  20.  Variations of peak stress coupling coefficients for WES5000 and C100 concretes with distance

  • [1] 方秦, 陈小伟. 冲击爆炸效应与工程防护专辑·编者按 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 024601. DOI: 10.1360/SSPMA-2019-0404.

    FANG Q, CHEN X W. Special topic of impact and explosion effect and engineering protection [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2020, 50(2): 024601. DOI: 10.1360/SSPMA-2019-0404.
    [2] GRAN J K, EHRGOTT J Q, CARGILE J D. Cavity expansion experiments with spherical explosive charges in concrete [R]. Vicksburg, USA: Army Engineer Research and Development Center, 2009.
    [3] SCHMIDT M J. High pressure and high strain rate behavior of cementitious materials: experiments and elastic/viscoplastic modeling [D]. Florida, USA: University of Florida, 2003: 4−56.
    [4] MU C M, ZHOU H, MA H F. Prediction method for ground shock parameters of explosion in concrete [J]. Construction and Building Materials, 2021, 291: 123372. DOI: 10.1016/j.conbuildmat.2021.123372.
    [5] 黄家蓉, 刘光昆, 吴飚, 等. 爆炸冲击作用下混凝土中动态应力波测试与仿真 [J]. 防护工程, 2020, 42(4): 23–28. DOI: 10.3969/j.issn.1674-1854.2020.04.003.

    HUANG J R, LIU G K, WU B, et al. Testing and simulation of dynamic stress wave in concrete under explosion and impact [J]. Protective Engineering, 2020, 42(4): 23–28. DOI: 10.3969/j.issn.1674-1854.2020.04.003.
    [6] 宗国庆. 混凝土介质爆破效应研究 [D]. 北京: 北京理工大学, 1994: 74−76.

    ZONG G Q. Research on blasting effects under concrete medium [D]. Beijing, China: Beijing Institute of Technology, 1994: 74−76.
    [7] TU H, FUNG T C, TAN K H, et al. An analytical model to predict the compressive damage of concrete plates under contact detonation [J]. International Journal of Impact Engineering, 2019, 134: 103344. DOI: 10.1016/j.ijimpeng.2019.103344.
    [8] 杨刚, 胡德安, 韩旭. 混凝土中爆炸模拟的数值方法比较 [J]. 应用力学学报, 2011, 28(4): 423–426.

    YANG G, HU D A, HAN X. Comparison study of numerical methods in simulation of explosion in concretes [J]. Chinese Journal of Applied Mechanics, 2011, 28(4): 423–426.
    [9] 董永香, 夏昌敬, 段祝平. 平面爆炸波在半无限混凝土介质中传播与衰减特性的数值分析 [J]. 工程力学, 2006, 23(2): 60–65. DOI: 10.3969/j.issn.1000-4750.2006.02.011.

    DONG Y X, XIA C J, DUAN Z P. Numerical analysis of plane explosive wave propagation with its attenuation behavior in semi-infinite medium [J]. Engineering Mechanics, 2006, 23(2): 60–65. DOI: 10.3969/j.issn.1000-4750.2006.02.011.
    [10] 赵凯, 王肖钧, 卞梁, 等. 混凝土介质中不同药形装药爆炸波传播特性的数值模拟 [J]. 中国科学技术大学学报, 2007, 37(7): 711–716. DOI: 10.3969/j.issn.0253-2778.2007.07.004.

    ZHAO K, WANG X J, BIAN L, et al. Numerical study on the propagation and damage behavior of the blasting wave with differently shaped explosives in concrete [J]. Journal of University of Science and Technology of China, 2007, 37(7): 711–716. DOI: 10.3969/j.issn.0253-2778.2007.07.004.
    [11] KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
    [12] ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
    [13] WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815.
    [14] 王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.

    WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
    [15] YANG S B, KONG X Z, WU H, et al. Constitutive modelling of UHPCC material under impact and blast loadings [J]. International Journal of Impact Engineering, 2021, 153: 103860. DOI: 10.1016/j.ijimpeng.2021.103860.
    [16] MANDAL J, GOEL M D, AGARWAL A K. Surface and buried explosions: an explorative review with recent advances [J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4815–4835. DOI: 10.1007/s11831-021-09553-2.
    [17] 李重情, 穆朝民, 石必明. 变埋深条件下混凝土中爆炸应力传播规律的研究 [J]. 振动与冲击, 2017, 36(6): 140–145. DOI: 10.13465/j.cnki.jvs.2017.07.021.

    LI Z Q, MU C M, SHI B M. Investigate on shock stress propagation in concrete at different depths under blasting [J]. Journal of Vibration and Shock, 2017, 36(6): 140–145. DOI: 10.13465/j.cnki.jvs.2017.07.021.
    [18] DRAKE J L, LITTLE C D. Ground shock from penetrating conventional weapons [R]. 1983: 1−6.
    [19] 施鹏, 邓国强, 杨秀敏, 等. 土中爆炸地冲击能量分布研究 [J]. 爆炸与冲击, 2006, 26(3): 240–244. DOI: 10.11883/1001-1455(2006)03-0240-05.

    SHI P, DENG G Q, YANG X M, et al. Study on ground shock energy distribution of explosion in soil [J]. Explosion and Shock Waves, 2006, 26(3): 240–244. DOI: 10.11883/1001-1455(2006)03-0240-05.
    [20] LEONG E C, ANAND S, CHEONG H K, et al. Re-examination of peak stress and scaled distance due to ground shock [J]. International Journal of Impact Engineering, 2007, 34(9): 1487–1499. DOI: 10.1016/j.ijimpeng.2006.10.009.
    [21] GRAN J K, FREW D J. In-target radial stress measurements from penetration experiments into concrete by ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1997, 19(8): 715–726. DOI: 10.1016/S0734-743X(97)00008-0.
    [22] GEBBEKEN N, GREULICH S, PIETZSCH A. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests [J]. International Journal of Impact Engineering, 2006, 32(12): 2017–2031. DOI: 10.1016/j.ijimpeng.2005.08.003.
    [23] ERZAR B, PONTIROLI C, BUZAUD E. Shock characterization of an ultra-high strength concrete [J]. The European Physical Journal Special Topics, 2016, 225(2): 355–361. DOI: 10.1140/epjst/e2016-02637-4.
    [24] PONTIROLI C, ERZAR B. Impact response of UHPC and UHPFRC: experimental study and numerical simulation [C] // Proceedings of the 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. Quebec, Canada, 2019.
    [25] WILLIAMS E M, GRAHAM S S, AKERS S A, et al. Mechanical properties of a baseline UHPC with and without steel fibers [J]. WIT Transactions on Engineering Sciences, 2009, 64(12): 93–104. DOI: 10.2495/MC090091.
    [26] REN G M, WU H, FANG Q, et al. Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses [J]. Construction and Building Materials, 2016, 113: 1–14. DOI: 10.1016/j.conbuildmat.2016.02.227.
    [27] TARVER C M, MCGUIRE E M. Reactive flow modeling of the interaction of TATB detonation waves with inert materials [R]. 2002.
    [28] VAN AMELSFORT R, WEERHEIJM J. The failure mode of concrete slabs due to contact charges [R]. Netherlands: Prins Maurits Laboratorium, 1988.
    [29] FORBES J W. Shock wave compression of condensed matter: a primer [M]. Berlin, Germany: Springer, 2012.
    [30] 赵凯. 分层防护层对爆炸波的衰减和弥散作用研究 [D]. 合肥: 中国科学技术大学, 2007: 74−75.

    ZHAO K. The attenuation and dispersion effects on explosive wave of layered protective engineering [D]. Hefei, Anhui, China: University of Science and Technology of China, 2007: 74−75.
    [31] 郑哲敏, 解伯民, 谈庆明, 等. 流体弹塑性模型及其在核爆与穿甲方面的应用 [R]. 北京: 中国科学院力学研究所, 1982.
    [32] 谈庆明. 量纲分析 [M]. 合肥: 中国科学技术大学出版社, 2005: 1−3.

    TAN Q M. Dimensional analysis [M]. Hefei, Anhui, China: China University of Science and Technology Press, 2005: 1−3.
    [33] WESTINE P S, FRIESENHAHN G J. Free-field ground shock pressures from buried detonations in saturated and unsaturated soils [R]. 1983: 12−16.
  • 加载中
图(20)
计量
  • 文章访问数:  1012
  • HTML全文浏览量:  258
  • PDF下载量:  322
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 修回日期:  2022-03-09
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-12-08

目录

    /

    返回文章
    返回