地冲击下新型脆断构件防护性能实验研究

周宏元 杜文钊 王小娟 张雪健 余尚江 张宏

周宏元, 杜文钊, 王小娟, 张雪健, 余尚江, 张宏. 地冲击下新型脆断构件防护性能实验研究[J]. 爆炸与冲击, 2022, 42(7): 075101. doi: 10.11883/bzycj-2022-0044
引用本文: 周宏元, 杜文钊, 王小娟, 张雪健, 余尚江, 张宏. 地冲击下新型脆断构件防护性能实验研究[J]. 爆炸与冲击, 2022, 42(7): 075101. doi: 10.11883/bzycj-2022-0044
ZHOU Hongyuan, DU Wenzhao, WANG Xiaojuan, ZHANG Xuejian, YU Shangjiang, ZHANG Hong. Experimental study on the protective performance of a new brittle component subjected to ground shock[J]. Explosion And Shock Waves, 2022, 42(7): 075101. doi: 10.11883/bzycj-2022-0044
Citation: ZHOU Hongyuan, DU Wenzhao, WANG Xiaojuan, ZHANG Xuejian, YU Shangjiang, ZHANG Hong. Experimental study on the protective performance of a new brittle component subjected to ground shock[J]. Explosion And Shock Waves, 2022, 42(7): 075101. doi: 10.11883/bzycj-2022-0044

地冲击下新型脆断构件防护性能实验研究

doi: 10.11883/bzycj-2022-0044
基金项目: 国家自然科学基金(51778028,51808017);国家重点研发计划(2019YFD1101005)
详细信息
    作者简介:

    周宏元(1981- ),男,博士,教授,hzhou@bjut.edu.cn

    通讯作者:

    王小娟(1982- ),女,博士,副教授,xiaojuanwang@bjut.edu.cn

  • 中图分类号: O383.2

Experimental study on the protective performance of a new brittle component subjected to ground shock

  • 摘要: 为对地冲击作用下地下结构进行有效防护,提出一种泡沫混凝土材质的新型防护构件。与使用实心泡沫混凝土层的防护机理不同,本文中提出的构件在地冲击作用下,首先发生脆断破坏,然后破碎块体间搭接折断、挤压密实。通过构造设计,截断地冲击荷载,减弱荷载传递,改变被保护结构上的荷载形式。通过场地爆炸实验对比了不同防护措施下(无防护、实心泡沫混凝土层防护及新型构件防护)被保护结构的动力响应。实验结果表明:新型构件防护通过脆断、破碎块体的搭接、挤压密实表现出较实心泡沫混凝土层防护更好的防护效果;新型构件防护由于脆断特性,在较小荷载下即可显著削弱荷载传递,避免了实心泡沫混凝土层防护中负效果的出现;地冲击荷载较强时,构件防护层趋于压实,其防护效果逐渐接近实心泡沫混凝土层。
  • 图  1  新型防护构件

    Figure  1.  The proposed new protective component

    图  2  新型构件的准静态力-位移曲线

    Figure  2.  Force-displacement curve of a new protective component under quasi-static compression

    图  3  脆断后新型构件与传统泡沫混凝土层的力-位移曲线对比

    Figure  3.  Comparison of force-displacement curves between a fractured new protective component anda foam concrete layer under quasi-static compression

    图  4  密度为450 kg/m3的泡沫混凝土的应力-应变关系

    Figure  4.  Stress-strain curve of the foam concrete with the density of 450 kg/m3

    图  5  新型构件防护层布置示意图

    Figure  5.  Schematic layout of the new protective layer

    图  6  实验所用基坑示意图

    Figure  6.  Schematic of the experimental pit

    图  7  新型构件防护层的排布

    Figure  7.  Layout of the new protective component layer

    图  8  实验设计示意图

    Figure  8.  Illustration of the experimental setup

    图  9  不同防护情况的钢盒

    Figure  9.  Steel boxes with different protection conditions

    图  10  传感器布置

    Figure  10.  Sensor layout

    图  11  工况1的加速度时程

    Figure  11.  Acceleration time histories in case 1

    图  12  工况1 D处的应变时程

    Figure  12.  Strain time histories at position D in case 1

    图  13  工况1 中B处的应变时程

    Figure  13.  Strain time histories at position B in case 1

    图  14  工况2的加速度时程

    Figure  14.  Acceleration time histories in case 2

    图  15  工况2中C处的应变时程

    Figure  15.  Strain time histories at position C in case 2

    图  16  工况3中D处的应变时程

    Figure  16.  Strain time histories at position D in case 3

    图  17  工况3中实验后泡沫混凝土层形态

    Figure  17.  The foam concrete layer after explosion in case 3

    图  18  工况3中实验后新型构件层形态

    Figure  18.  The protective component layer after explosion in case 3

    图  19  工况2中实验后新型构件层形态

    Figure  19.  The protective component layer after explosion in case 2

    表  1  钢的性质

    Table  1.   Properties of steel

    钢材密度/(kg·m−3)杨氏模量/GPa屈服强度/MPa抗拉强度/MPa伸长率/%
    Q235B7 83021023537521
    下载: 导出CSV

    表  2  爆炸工况

    Table  2.   Explosion cases

    编号装药质量/g爆距/mm埋深/mm细砂密度/(kg·m−3)细砂波阻抗/(kg·m−2·s−1)衰减系数
    11005005001 4501.3×1053.25
    22005005001 8005.4×1053.25
    32003504501 8005.4×1053.25
    下载: 导出CSV

    表  3  工况2中不同防护手段下加速度峰值的比较

    Table  3.   Peak accelerations under protecitve methodsin case 2

    防护情况加速度峰值/(m·s−2)增量比/%
    无防护3 9530
    泡沫混凝土层防护2 506−36.6
    新型脆断构件防护1 671−57.7
    下载: 导出CSV
  • [1] 徐世烺, 李锐, 李庆华, 等. 超高韧性水泥基复合材料功能梯度板接触爆炸数值模拟 [J]. 工程力学, 2020, 37(8): 123–133; 178. DOI: 10.6052/j.issn.1000-4750.2019.09.0548.

    U S L, LI R, LI Q H, et al. Numerical simulation of functionally graded slabs of ultra-high toughness cementitious composites under contact explosion [J]. Engineering Mechanics, 2020, 37(8): 123–133; 178. DOI: 10.6052/j.issn.1000-4750.2019.09.0548.
    [2] 吴平, 徐世烺, 李庆华, 等. 内埋炸药下超高韧性水泥基复合材料的抗爆性能 [J]. 爆炸与冲击, 2021, 41(7): 075101. DOI: 10.11883/bzycj-2021-0059.

    WU P, XU S L, LI Q H, et al. Anti-explosion tests and numerical simulation of ultra-high toughness cementitious composites subjected to blast by embedded explosives [J]. Explosion and Shock Waves, 2021, 41(7): 075101. DOI: 10.11883/bzycj-2021-0059.
    [3] 戎志丹, 孙伟, 张云升, 等. 超高性能水泥基复合材料的抗爆炸性能 [J]. 爆炸与冲击, 2010, 30(3): 232–238. DOI: 10.11883/1001-1455(2010)03-0232-07.

    RONG Z D, SUN W, ZHANG Y S, et al. Characteristics of ultra-high performance cementitious composites under explosion [J]. Explosion and Shock Waves, 2010, 30(3): 232–238. DOI: 10.11883/1001-1455(2010)03-0232-07.
    [4] ZHOU H Y, ZHAO Z Y, MA G W. Mitigating ground shocks with cellular solids [J]. Journal of Engineering Mechanics, 2013, 139(10): 1362–1371. DOI: 10.1061/(ASCE)EM.1943-7889.0000585.
    [5] YE Z Q, MA G W. Effects of foam claddings for structure protection against blast loads [J]. Journal of Engineering Mechanics, 2007, 133(1): 41–47. DOI: 10.1061/(ASCE)0733-9399(2007)133:1(41).
    [6] 张勇. 聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析 [J]. 爆炸与冲击, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.

    ZHANG Y. Testingand numerical simulation of the antiknock energy absorption of polyurethane foam aluminum composite structure [J]. Explosion and Shock Waves, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.
    [7] 程帅, 师莹菊, 殷文骏, 等. 泡沫铝内衬对抗内部爆炸钢筒变形的影响 [J]. 爆炸与冲击, 2020, 40(7): 071406. DOI: 10.11883/bzycj-2019-0339.

    CHENG S, SHI Y J, YIN W J, et al. Influence of aluminum foam lining on deformation of steel cylinders subjected to internal blast loading [J]. Explosion and Shock Waves, 2020, 40(7): 071406. DOI: 10.11883/bzycj-2019-0339.
    [8] 高海莹, 刘中宪, 杨烨凯, 等. 泡沫铝防护钢筋混凝土板的抗爆性能 [J]. 爆炸与冲击, 2019, 39(2): 023101. DOI: 10.1183/bzycj-2018-0284.

    GAO H Y, LIU Z X, YANG Y K, et al. Blast-resistant performance of aluminum foam-protected reinforced concrete slabs [J]. Explosion and Shock Waves, 2019, 39(2): 023101. DOI: 10.1183/bzycj-2018-0284.
    [9] ICHINO H, BEPPU M, WILLIAMSON E B, et al. Performance and evaluation of an eps plate to mitigate blast on underground protective structures [J]. International Journal of Impact Engineering, 2021, 148(5): 103758. DOI: 10.1016/j.ijimpeng.2020.103758.
    [10] DE A, MORGANTE A N, ZIMMIE T F. Numerical and physical modeling of geofoam barriers as protection against effects of surface blast on underground tunnels [J]. Geotextiles and Geomembranes, 2016, 44(1): 1–12. DOI: 10.1016/j.geotexmem.2015.06.008.
    [11] WANG Z L, LI Y C, WANG J G. Numerical analysis of attenuation effect of eps geofoam on stress-waves in civil defense engineering [J]. Geotextiles and Geomembranes, 2006, 24(5): 265–273. DOI: 10.1016/j.geotexmem.2006.04.002.
    [12] WANG J G, SUN W, ANAND S. Numerical investigation on active isolation of ground shock by soft porous layers [J]. Journal of Sound and Vibration, 2009, 321(3/4/5): 492–509. DOI: 10.1016/j.jsv.2008.09.047.
    [13] BAZIAR M H, SHAHNAZARI H, KAZEMI M. Mitigation of surface impact loading effects on the underground structures with geofoam barrier: centrifuge modeling [J]. Tunneling and Underground Space Technology, 2018, 80: 128–142. DOI: 10.1016/j.tust.2018.06.010.
    [14] 陈锐林, 董琪, 禹兵兵, 等. 近爆下泡沫混凝土复合结构在地下洞室的抗爆特性数值研究 [J]. 计算力学学报, 2019, 36(2): 267–277. DOI: 10.7511/jslx20171218003.

    CHEN R L, DONG Q, YU B B, et al. Numerical research on anti-explosion capacity of foam concrete composite structure in underground opening under close-in explosion [J]. Journal of Computational Mechanics, 2019, 36(2): 267–277. DOI: 10.7511/jslx20171218003.
    [15] 刘晓蓬, 陈健云, 徐强. 混凝土重力坝爆炸荷载数值分析及抗爆性能研究 [J]. 计算力学学报, 2018, 35(2): 174–181. DOI: 10.7511/jslx20170103002.

    LIU X P, CHEN J Y, XU Q. Numerical analysis and anti-knock property study of concrete dam subjected to underwater explosion [J]. Chinese Journal of Computational Mechanics, 2018, 35(2): 174–181. DOI: 10.7511/jslx20170103002.
    [16] 刘殿书, 冯明德, 王代华. 复合防护结构的动力响应及破坏规律研究 [J]. 中国矿业大学学报, 2007(3): 335–338. DOI: 10.3321/j.issn:1000-1964.2007.03.012.

    LIU D S, FENG M D, WANG D H. Research on dynamic response and failure law of composite protective structure [J]. Journal of China University of Mining and Technology, 2007(3): 335–338. DOI: 10.3321/j.issn:1000-1964.2007.03.012.
    [17] WANG G, DENG Z, XU H, et al. Application of foamed concrete backfill in improving antiexplosion performance of buried pipelines [J]. Journal of Materials in Civil Engineering, 2021, 33(4): 04021052. DOI: 10.1061/(ASCE)MT.1943-5533.0003630.
    [18] 张斌, 许金余, 李乐, 等. 泡沫混凝土回填层在地下复合结构中的抗爆特性分析 [J]. 四川建筑科学研究, 2010, 36(6): 135–138. DOI: 10.3969/j.issn.1008-1933.2010.06.036.

    ZHANG B, XU J Y, LI L, et al. Analysis of antidetonational property of foam concrete backfill layers in underground compound structure [J]. Sichuan Building Science Research, 2010, 36(6): 135–138. DOI: 10.3969/j.issn.1008-1933.2010.06.036.
    [19] 周宏元, 李永胜, 王小娟, 等. 地冲击作用下基于泡沫混凝土的地下结构柔性防护 [J]. 北京工业大学学报, 2020, 46(6): 533–539. DOI: 10.11936/bjutxb2020010013.

    ZHOU H Y, LI Y S, WANG X J, et al. Flexible protection of underground structures with foam concrete subjected to ground shocks [J]. Journal of Beijing University of Technology, 2020, 46(6): 533–539. DOI: 10.11936/bjutxb2020010013.
    [20] Department of the Army. Fundamentals of protective design for conventional weapons: TM 5-855-1 [M]. Washington, DC, USA: Department of the Army, 1986.
    [21] WEIDLINGER P, HINMAN E. Analysis of underground protective structures [J]. Journal of Structural Engineering, 1988, 114(7): 1658–1673. DOI: 10.1061/(ASCE)0733-9445(1988)114:7(1658).
    [22] WONG F S, WEIDLINGER P. Design of underground protective structures [J]. Journal of Structural Engineering, 1983, 109(8): 1972–1979. DOI: 10.1061/(ASCE)0733-9445(1983)109:8(1972).
    [23] MA G W, ZHOU H Y, LU Y, et al. In-structure shock of underground structures: a theoretical approach [J]. Engineering Structures, 2010, 32(12): 3836–3844. DOI: 10.1016/j.engstruct.2010.08.026.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  178
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-27
  • 修回日期:  2022-05-23
  • 网络出版日期:  2022-05-30
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回