高速颗粒流冲击下负泊松比力学超材料夹芯梁的动态响应及缓冲吸能机理

胡朝磊 孙海亮 王志鹏 包兆鹏 崔天宁 秦庆华

胡朝磊, 孙海亮, 王志鹏, 包兆鹏, 崔天宁, 秦庆华. 高速颗粒流冲击下负泊松比力学超材料夹芯梁的动态响应及缓冲吸能机理[J]. 爆炸与冲击, 2022, 42(12): 123101. doi: 10.11883/bzycj-2022-0045
引用本文: 胡朝磊, 孙海亮, 王志鹏, 包兆鹏, 崔天宁, 秦庆华. 高速颗粒流冲击下负泊松比力学超材料夹芯梁的动态响应及缓冲吸能机理[J]. 爆炸与冲击, 2022, 42(12): 123101. doi: 10.11883/bzycj-2022-0045
HU Chaolei, SUN Hailiang, WANG Zhipeng, BAO Zhaopeng, CUI Tianning, QIN Qinghua. Dynamic response and mechanism of mitigation and energy absorption of sandwich beams with a mechanical metamaterial core of negative Poisson’s ratio subjected to high-velocity impact of granular slug[J]. Explosion And Shock Waves, 2022, 42(12): 123101. doi: 10.11883/bzycj-2022-0045
Citation: HU Chaolei, SUN Hailiang, WANG Zhipeng, BAO Zhaopeng, CUI Tianning, QIN Qinghua. Dynamic response and mechanism of mitigation and energy absorption of sandwich beams with a mechanical metamaterial core of negative Poisson’s ratio subjected to high-velocity impact of granular slug[J]. Explosion And Shock Waves, 2022, 42(12): 123101. doi: 10.11883/bzycj-2022-0045

高速颗粒流冲击下负泊松比力学超材料夹芯梁的动态响应及缓冲吸能机理

doi: 10.11883/bzycj-2022-0045
基金项目: 国家自然科学基金(11972281);航空科学基金(201941070001);爆炸科学与技术国家重点实验室(北京理工大学)开放课题(KFJJ22-07M)
详细信息
    作者简介:

    胡朝磊(1995-  ),男,硕士研究生,hcl2047537371@stu.xjtu.edu.cn

    通讯作者:

    秦庆华(1976-  ),男,博士,教授,博士生导师,qhqin@mail.xjtu.edu.cn

  • 中图分类号: O347.3

Dynamic response and mechanism of mitigation and energy absorption of sandwich beams with a mechanical metamaterial core of negative Poisson’s ratio subjected to high-velocity impact of granular slug

  • 摘要: 建立了颗粒流子弹发射有限元模型,利用离散元和有限元的联合模拟方法,研究了高速颗粒流冲击负泊松比内凹蜂窝夹芯梁的动态响应及缓冲吸能机理。分析了加载冲量、冲击角、芯材强度以及颗粒流子弹与面板间的摩擦力等因素对夹芯梁动态响应的影响。研究结果表明:夹芯梁在正向颗粒流子弹冲击载荷作用下表现为局部凹陷和整体弯曲的耦合变形模式,面内设计芯材因胞壁弯曲呈现局部内凹的变形模式,面外设计芯材因胞壁屈曲呈现局部褶皱的变形模式。在等面密度的条件下,采用面外设计的硬芯夹芯梁面板的跨中最大挠度比采用面内设计的软芯夹芯梁小,但初始冲击力峰值和冲击力整体水平较高,冲击力响应时间较短。夹芯梁前后面板的跨中最大挠度与冲击载荷近似呈对数线性递增关系。与正向冲击相比,斜冲击下夹芯梁的变形模式具有非对称性,局部凹陷程度减小;在颗粒流子弹不同冲击角度作用下,夹芯梁前后面板的跨中最大挠度、初始冲击力峰值以及传递到夹芯梁的动能和动量占比随冲击角度的增大而减小,而颗粒流子弹与夹芯梁面板间的摩擦因数对夹芯梁的动态响应无显著影响。
  • 图  1  数值模型

    Figure  1.  Numerical model

    图  2  内凹蜂窝几何尺寸

    Figure  2.  Size of reentrant honeycomb

    图  3  芯材设计

    Figure  3.  Design of core

    图  4  软颗粒接触模型

    Figure  4.  Soft-particle contact model

    图  5  颗粒流子弹压缩曲线

    Figure  5.  Nominal stress-strain curves of granular slug

    图  6  标记点恒定速度

    Figure  6.  Steady velocity of marker points

    图  7  颗粒流子弹长度变化曲线

    Figure  7.  Length change curves of granular slug

    图  8  梁跨中挠度时程曲线

    Figure  8.  Mid-span deflections of beams versus time

    图  9  颗粒流子弹正向冲击下夹芯梁的变形(vp=150 m/s)

    Figure  9.  Deformation of sandwich beam under normal impact of granular slug (vp=150 m/s)

    图  10  冲击力时程曲线

    Figure  10.  Impact force versus time

    图  11  正向冲击时面板变形模式

    Figure  11.  Deformation modes of face sheets under normal impact

    图  12  芯材节点速度矢量图

    Figure  12.  Node velocity vectors diagram of core

    图  13  颗粒流子弹流动形态

    Figure  13.  Flow mode of granular slug

    图  14  颗粒流子弹速度时程曲线(vp =150 m/s)

    Figure  14.  Velocity of granular slug versus time (vp =150 m/s)

    图  15  夹芯梁前后面板跨中最大挠度与不同冲量间的关系

    Figure  15.  Maximum mid-span deflections of face sheets versus impulse

    图  16  冲击角为45 °时夹芯梁的变形(vp=150 m/s)

    Figure  16.  Deformation of sandwich beam (vp=150 m/s, $ \theta = $45°)

    图  17  冲击力时程曲线

    Figure  17.  Impact force versus time

    图  18  斜45°冲击面板变形模式

    Figure  18.  Deformation modes of face sheets ($ \theta = $45°)

    图  19  颗粒流子弹流动形态

    Figure  19.  Flow mode of granular slug

    图  20  面板跨中最大挠度与冲击角的关系

    Figure  20.  Maximum mid-span deflections of face sheets versus impact angle

    图  21  不同冲击角度下的冲击力时程曲线

    Figure  21.  Impact force versus time at different impact angles

    图  22  颗粒流子弹动能时程曲线

    Figure  22.  Kinetic energy of granular slug versus time

    图  23  颗粒流子弹剩余动能占比与冲击角的关系

    Figure  23.  Relationship between residual kinetic energy proportion and impact angle

    图  24  夹芯梁能量时程曲线

    Figure  24.  Total energy of sandwich beam versus time

    图  25  夹芯梁吸收能量占比与冲击角的关系

    Figure  25.  Relationship between absorbed energy proportion and impact angle

    图  26  颗粒流子弹动量时程曲线

    Figure  26.  Momentum of granular slug versus time

    图  27  颗粒流子弹剩余动量、偏转动量占比与冲击角度的关系

    Figure  27.  Relationships of proportion of residual momentum and proportion of deflection momentum with impact angle

    图  28  夹芯梁动量时程曲线

    Figure  28.  Momentum of sandwich beam versus time

    图  29  夹芯梁动量占比与冲击角的关系

    Figure  29.  Relationship between proportion of momentum and impact angle

    图  30  摩擦因数与面板跨中最大扰度的关系

    Figure  30.  Maximum mid-span deflections of face sheets versus friction coefficients

    图  31  芯材面外布置的夹芯梁的变形(vp=150 m/s)

    Figure  31.  Deformation of sandwich beam with out-of-plane honeycomb core (vp=150 m/s)

    图  32  冲击力时程曲线

    Figure  32.  Impact force versus time

    图  33  芯材剖面图

    Figure  33.  Sectional view of core

    图  34  芯材面内和面外布置夹芯梁的跨中挠度时程曲线

    Figure  34.  Mid-span deflections of sandwich beams with in-plane and out-of-plane honeycomb cores versus time

    图  35  芯材面内和面外布置夹芯梁的冲击力时程曲线

    Figure  35.  Impact forces of sandwich beams with in-plane and out-of-plane honeycomb cores versus time

    表  1  颗粒流子弹不同加载冲量

    Table  1.   Different impulses of granular slug

    vp/(m·s−1)v0/(m·s−1)I0/(kN·s·m−2)
    120133.0323.70
    130143.0925.50
    140153.0327.27
    150162.9329.03
    下载: 导出CSV
  • [1] PINGLE S M, FLECK N A, WADLEY H N G, et al. Discrete element calculations of the impact of a sand column against rigid structures [J]. International Journal of Impact Engineering, 2012, 45: 74–89. DOI: 10.1016/j.ijimpeng.2011.10.005.
    [2] BØRVIK T, OLOVSSON L, HANSSEN A G, et al. A discrete particle approach to simulate the combined effect of blast and sand impact loading of steel plates [J]. Journal of the Mechanics and Physics of Solids, 2011, 59(5): 940–958. DOI: 10.1016/j.jmps.2011.03.004.
    [3] 赵振宇, 任建伟, 金峰, 等. V形防护结构研究综述 [J]. 应用力学学报, 2020, 37(6): 2527–2534. DOI: 10.11776/cjam.37.06.B154.

    ZHAO Z Y, REN J W, JIN F, et al. Investigation process on V-shape protective structures [J]. Chinese Journal of Applied Mechanics, 2020, 37(6): 2527–2534. DOI: 10.11776/cjam.37.06.B154.
    [4] GOEL A, WADLEY H N G, DESHPANDE V S. Impact of granular slugs on rigid targets: effect of grain shape and fracture [J]. European Journal of Mechanics:A/Solids, 2018, 71: 64–76. DOI: 10.1016/j.euromechsol.2018.02.015.
    [5] LIU T, FLECK N A, WADLEY H N G, et al. The impact of sand slugs against beams and plates: coupled discrete particle/finite element simulations [J]. Journal of the Mechanics and Physics of Solids, 2013, 61(8): 1798–1821. DOI: 10.1016/j.jmps.2013.03.008.
    [6] DHARMASENA K P, WADLEY H N G, LIU T, et al. The dynamic response of edge clamped plates loaded by spherically expanding sand shells [J]. International Journal of Impact Engineering, 2013, 62: 182–195. DOI: 10.1016/j.ijimpeng.2013.06.012.
    [7] KYNER A, DHARMASENA K, WILLIAMS K, et al. Response of square honeycomb core sandwich panels to granular matter impact [J]. International Journal of Impact Engineering, 2018, 117: 13–31. DOI: 10.1016/j.ijimpeng.2018.02.009.
    [8] UTH T, DESHPANDE V S. Response of clamped sandwich beams subjected to high-velocity impact by sand slugs [J]. International Journal of Impact Engineering, 2014, 69: 165–181. DOI: 10.1016/j.ijimpeng.2014.02.012.
    [9] PARK S, UTH T, FLECK N A, et al. Sand column impact onto a Kolsky pressure bar [J]. International Journal of Impact Engineering, 2013, 62: 229–242. DOI: 10.1016/j.ijimpeng.2013.07.003.
    [10] UTH T, WADLEY H N G, DESHPANDE V S. The effect of inclination and stand-off on the dynamic response of beams impacted by slugs of a granular material [J]. International Journal of Solids and Structures, 2015, 56/57: 154–174. DOI: 10.1016/j.ijsolstr.2014.11.019.
    [11] GOEL A, UTH T, LIU T, et al. Coupled discrete/continuum simulations of the impact of granular slugs with clamped beams: stand-off effects [J]. Mechanics of Materials, 2018, 116: 90–103. DOI: 10.1016/j.mechmat.2017.03.001.
    [12] FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics, 2004, 71(3): 386–401. DOI: 10.1115/1.1629109.
    [13] XUE Z Y, HUTCHINSON J W. A comparative study of impulse-resistant metal sandwich plates [J]. International Journal of Impact Engineering, 2004, 30(10): 1283–1305. DOI: 10.1016/j.ijimpeng.2003.08.007.
    [14] WADLEY H, DHARMASENA K, CHEN Y, et al. Compressive response of multilayered pyramidal lattices during underwater shock loading [J]. International Journal of Impact Engineering, 2008, 35(9): 1102–1114. DOI: 10.1016/j.ijimpeng.2007.06.009.
    [15] WEI Z, DESHPANDE V S, EVANS A G, et al. The resistance of metallic plates to localized impulse [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 2074–2091. DOI: 10.1016/j.jmps.2007.10.010.
    [16] 朱源, 张建勋, 秦庆华. 金属正交波纹夹芯结构的动态压缩响应 [J]. 爆炸与冲击, 2020, 40(1): 013101. DOI: 10.11883/bzycj-2019-0038.

    ZHU Y, ZHANG J X, QIN Q H. Dynamic compressive response of metal orthogonal corrugated sandwich structure [J]. Explosion and Shock Waves, 2020, 40(1): 013101. DOI: 10.11883/bzycj-2019-0038.
    [17] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展 [J]. 力学学报, 2019, 51(3): 656–687. DOI: 10.6052/0459-1879-18-381.

    REN X, ZHANG X Y, XIE Y M. Research progress in auxetic materials and structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656–687. DOI: 10.6052/0459-1879-18-381.
    [18] YANG L, CORMIER D, WEST H, et al. Non-stochastic Ti-6Al-4V foam structures with negative Poisson’s ratio [J]. Materials Science and Engineering:A, 2012, 558: 579–585. DOI: 10.1016/j.msea.2012.08.053.
    [19] XIAO D B, CHEN X Q, LI Y, et al. The structure response of sandwich beams with metallic auxetic honeycomb cores under localized impulsive loading-experiments and finite element analysis [J]. Materials & Design, 2019, 176: 107840. DOI: 10.1016/j.matdes.2019.107840.
    [20] 吴文旺, 肖登宝, 孟嘉旭, 等. 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望 [J]. 力学学报, 2021, 53(3): 611–638. DOI: 10.6052/0459-1879-20-333.

    WU W W, XIAO D B, MENG J X, et al. Mechanical design, impact energy absorption and applications of auxetic structures in automobile lightweight engineering [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611–638. DOI: 10.6052/0459-1879-20-333.
    [21] HOU X H, DENG Z C, ZHANG K. Dynamic crushing strength analysis of auxetic honeycombs [J]. Acta Mechanica Solida Sinica, 2016, 29(5): 490–501. DOI: 10.1016/s0894-9166(16)30267-1.
    [22] IMBALZANO G, LINFORTH S, NGO T, et al. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs [J]. Composite Structures, 2018, 183: 242–261. DOI: 10.1016/j.compstruct.2017.03.018.
    [23] LUO F, ZHANG S L, YANG D Q. Anti-explosion performance of composite blast wall with an auxetic re-entrant honeycomb core for offshore platforms [J]. Journal of Marine Science and Engineering, 2020, 8(3): 182. DOI: 10.3390/jmse8030182.
  • 加载中
图(35) / 表(1)
计量
  • 文章访问数:  993
  • HTML全文浏览量:  197
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-09
  • 修回日期:  2022-06-30
  • 网络出版日期:  2022-07-11
  • 刊出日期:  2022-12-08

目录

    /

    返回文章
    返回