Fractal correction of dynamic fracture parameters of black sandstone under impact loads
-
摘要: 基于分形理论研究了偏折裂纹扩展路径对动载荷作用下黑砂岩的动态断裂力学参数的测试误差影响作用,采用传统的分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)实验装置对修正侧开单裂纹半孔板(improved single cleavage semi-circle specimen, ISCSC)试样进行动态冲击实验,随后采用裂纹扩展计进行裂纹起裂时间与裂纹扩展速度等动态断裂力学参数测试,采用分形理论对测试的裂纹扩展速度与动态应力强度因子进行修正,利用实验-数值法对黑砂岩的动态断裂韧度进行计算。研究结果表明,ISCSC构型构件能够有效应用于岩石材料动态裂纹扩展行为的研究,并发生了止裂现象,经分形修正的裂纹扩展速度与动态断裂韧度更接近实际裂纹动态扩展情况,修正前后得到黑砂岩材料的裂纹扩展速度误差为33.51%,动态断裂韧度最大误差为7.68%,说明利用分形理论对动态断裂韧度等动态断裂参数计算更合理。Abstract: When studying the dynamic fracture behavior of cracked rock mass, dynamic fracture toughness is an important mechanical parameter to study the fracture characteristics of cracks, which can accurately reflect the energy required in the crack initiation and propagation stage. However, compared with the static fracture problem, it is difficult to obtain an analytical solution for dynamic fracture toughness. Therefore, many scholars measure the crack propagation speed by using crack propagation gauges, and then calculate the dynamic fracture toughness according to the universal function. In this way, the crack propagation speed plays a leading role in the calculation accuracy, but in the experiment, the crack propagation speed cannot be measured accurately due to the measuring instrument. In this paper, the fractal theory is used to correct this error. According to the fractal theory, the effects of deflected crack propagation trajectories on dynamic fracture properties of black sandstone under impact loads were studied. A traditional modified split Hopkinson pressure bar (SHPB) test device was used to conduct a dynamic impact test by using an improved single cleavage semi-circle (ISCSC) specimen, crack propagation speed and other fracture mechanics parameters were measured using crack propagation gauge (CPG). Subsequently, the fractal theory was applied to correct dynamic crack propagation speed and dynamic stress intensity factor, and the dynamic fracture toughness of black sandstone was also calculated using the experimental-numerical method. The research results indicate that the ISCSC specimen can be effectively applied to study the crack arrest behavior of rock materials. Crack propagation speed and dynamic fracture toughness after fractal correction are closer to the actual dynamic crack propagation characteristics. Comparisons between before and after the correction, the maximum error of the crack propagation speed of black sandstone material is 33.51%, and the maximum error of dynamic fracture toughness is 7.68%, indicating that it is more reasonable to use fractal theory to calculate dynamic fracture parameters such as crack propagation speed and dynamic fracture toughness.
-
自2004年石墨烯首次被制备,其独特的二维结构和优异的电学、光学、热学及机械性能使其迅速成为材料、化学、物理和工程领域的研究热点。大量研究表明,石墨烯及其衍生物在生物传感器、储氢材料、太阳能电池、半导体材料、纳米器件等领域具有重要的应用价值[1]。
目前,关于石墨烯的制备方法有很多种,从材料来源上大致可以分为两类,一类利用了石墨层间作用力相对层内原子间作用力较小的特点,将石墨层片进行剥离获取,如利用石墨为原料的机械剥离法[2]、利用膨胀石墨为原料的液相或气相剥离法及爆轰剥离法[3-5],该类方法所得产物的纯度高、缺陷少,且制备工艺简便快捷;另一类是通过化学方法合成,即通过将碳原子重新排列组合合成石墨烯,如碳化硅表面外延生长、氧化-还原法、化学气相沉积法等[6-8]。
爆轰制备技术最早应用于金刚石的制备合成,目前已应用于石墨[5]、纳米碳包金属[9-11]、纳米球状铜[12]、纳米氧化铝[13]、纳米氧化钛[14]、纳米氧化铁[15]、纳米锰酸锂[16]以及锰铁氧体(尖晶石)[17]的研究。爆轰制备技术具有工艺简单、效率高等特点,因而具有广阔的研究及应用前景。
1. 实验材料与设备
实验材料:天然石墨、发烟硝酸(87%)、硝基甲烷。
实验设备:热处理炉、球形爆炸反应釜、起爆装置。
表征设备:XRD-6000、TEM(Tecnai 20)、SEM(FEI Quanta 200)、Raman光谱仪(inVia)、SEM/EDX(JSM-5600LV)、NOVA-4000比表面积与孔隙度分析仪(77 K,氮吸附)。
2. 实验过程与产物表征
2.1 实验过程
将物质的量之比为3:3:4的石墨、发烟硝酸及硝基甲烷混合,过程如下:先将石墨与发烟HNO3混合(用于制备HNO3 GICs),静置冷却后加入CH3NO2,配置成液体炸药,混合时温度应保持在273~293 K。之后将混合液体装入特定的塑料容器中,并将其置于爆轰反应釜的中心位置,密闭反应釜空间,之后用雷管引爆混合液体后,收集爆轰产物。利用XRD与EDX分析爆轰前后石墨的成分变化,采用SEM与TEM技术对产物微观形貌及结构进行表征,通过Raman光谱对爆轰产物的结构进行分析,并根据孔吸附的结果对比前驱体与爆轰产物的比表面积。
2.2 产物表征
收集到的爆轰产物呈现黑色粉末状,粒径极为细小,通过表征设备所得结果分析如下。
2.2.1 XRD分析
爆轰产物从反应釜内壁面收集,呈现黑色,其X射线衍射图谱如图 1所示,图中纵坐标I表示衍射强度,横坐标2θ表示X射线衍射仪扫描整个衍射区域的角度。将图 1与标准图谱中的2h型石墨衍射图谱进行对比,结果显示其特征峰(在图 1中已标出的衍射峰)完全一致。在天然石墨的衍射图谱中,最强峰(002)峰和次强峰(004)峰在爆轰后峰值强度都减弱,而(100)、(102)、(103)峰的峰值强度却增强。数值显示,爆轰前后石墨的(002)峰衍射强度数值相差72倍;图 1中,将天然石墨及爆轰产物的(002)峰按其衍射强度的原始数据显示于图 1右侧,衍射强度对比非常明显,同理,爆轰产物的(004)峰也被大大削弱。
依据X射线衍射结果,利用Scherrer公式计算天然石墨及爆轰产物的半波宽与平均晶粒尺寸,将爆轰产物和天然石墨的参数列于表 1中进行对比,表中,d002表示(002)方向晶面间距,即石墨层片间距,B002表示(002)峰的半波宽,D表示平均晶粒尺寸。由表 1可以看出,爆轰产物的平均晶粒尺寸为14.73 nm,而天然石墨的平均晶粒尺寸为39.95 nm。爆轰产物的平均晶粒尺寸大大减小,说明垂直于晶面方向的晶粒尺寸远小于天然石墨,即石墨层片已在爆轰过程中剥离。
表 1 利用XRD测得的天然石墨与爆轰产物的参数Table 1. Parameters of natural graphite and detonation soot from XRD样品 2θ/(°) d002/nm B002/pm D/nm 爆轰产物 26.48 0.34 9.67 14.73 天然石墨 26.54 0.34 3.57 39.95 EDX分析数据显示爆轰产物中98.12%为碳元素,仅含有微量Fe、Si元素,因此,XRD图谱中各峰值的变化并不是由于物质成分变化,而是因为粒径尺寸变化所致。实验中将发烟HNO3与石墨进行混合后,由于石墨层间距(c轴方向)较大,在强氧化性酸存在的条件下,使得NO3-插入石墨层间,形成受体型GICs,并使石墨层间距进一步扩大。在引爆过程中,层间的NO3-迅速分解,生成大量气体,冲击作用于相邻石墨层片将其推开,使其相互剥离,同时爆炸过程中,冲击破坏作用还将石墨层片破碎,使得爆轰产物相比天然石墨在a轴、c轴方向的尺寸都大大减小,其中,作为特征峰的(002)、(004)峰,直接反映c轴方向晶粒的尺寸,爆轰后尺寸明显减小,衍射强度减弱,B值增大,其特征峰严重宽化。基于相同原因,(100)、(102)、(103)3个峰在爆轰产物中近乎于消失。
2.2.2 SEM与TEM分析
利用SEM与TEM对爆轰产物进行表征,表征结果如图 2所示,图 2(a)为天然石墨的SEM图,图中显示天然石墨的厚度及粒径较大,在肉眼可识别的范围;图 2(b)~(c)为爆轰产物的SEM图片,可以看出,爆轰产物呈现层片状,且厚度非常薄,图中所示薄片仅有13.3 nm,这与表 1中Scherrer公式所推导出14.73 nm的平均晶粒度基本相符,确定爆轰后石墨层已被剥离,形成非常薄的石墨层片,结合XRD的分析,可以确定爆轰产物为纯度较高的石墨烯;图 2(d)为爆轰产物的TEM图片,图中通过石墨层片可以看到背底网栅,表明所制备的石墨烯拥有极薄的厚度,这与SEM图(图 2(c))所得到的结果完全一致,同时图中也显示,所得石墨烯具有非常大的表面积,这一特性使所制备的石墨烯可应用于导电添加剂。
2.2.3 Raman光谱分析
爆轰产物中碳的结构可以通过Raman光谱给出(图 3),纵坐标IR表示Raman信号强度,横坐标sR表示Raman频移。Raman光谱中有两个明显的峰,分别是位于1 576.56 cm-1处的G-band和位于1 334.82 cm-1处的为D-band。其中,G-band主要是因为石墨基平面所有sp2原子对的拉伸运动引起的,而D-band是粒子尺寸效应、晶格畸变等缺陷及无序等原因引起的[18]。所得到的Raman光谱(见图 3)中,G-band强度较高,而D-band强度非常低,显示所制备的石墨烯晶体结构较好,同时也阐释了在对前驱体进行插层处理及爆轰剥离时,并未使爆轰产物中产生大量无定形碳。
2.2.4 吸附及比表面分析
采用比表面积与孔隙度分析仪分析天然石墨和爆轰产物石墨烯的比表面积、孔径分布,结果显示石墨烯、天然石墨的比表面积分别为81.74、8.92 m2/g,石墨烯的比表面积达到天然石墨的9.16倍,显示在相同条件下,作为爆轰产物的石墨烯具有更强的吸附脱附能力。图 4给出了不同孔径对应的孔的表面积,其中,纵坐标Sa表示单位质量的表面积,横坐标Dp表示孔径。图 4中可以看出,2~3 nm的孔径对天然石墨的脱附量影响最大,而爆轰产物中,2~3 nm的孔数量有所增加,脱附量的增加主要集中于10 nm以下,其中,对脱附量影响最大的为孔径4 nm左右的孔。由此可见,爆轰过程使得石墨层片剥离后形成石墨烯后,不仅使比表面积增大,而且改变了石墨孔吸附脱附能力的分布曲线,大量增加了4 nm左右孔径的孔的数量,使爆轰产物吸附脱附性能大大增强。
3. 结论
(1) 利用石墨在强氧化性酸的环境中可获得低阶插层的特点,以发烟硝酸与硝基甲烷为液体炸药组分,可以制备出具有完整的片状结构石墨烯薄片,薄片平均厚度约为14.73 nm;
(2) 利用强酸性液体炸药制备出的石墨烯薄片具有良好的晶体结构,液体炸药爆轰过程未增加无序碳的量;
(3) 石墨烯的比表面积增大至天然石墨的9.16倍,其比表面积的增加主要源于直径低于10 nm的孔,其中4 nm左右孔的增加量最大;
(4) 利用液体炸药制备石墨烯薄片,制备工艺简单、速度快、效率高、产物纯度高, 但是需要专用的爆轰设备。
-
表 1 分形修正前后的裂纹扩展速度和动态扩展韧度
Table 1. Crack propagation speeds and dynamic crack propagation toughnesses before and after fractal correction
样品 v0/(m·s−1) vc/(m·s−1) ev/% KdI/(MPa·m1/2) KdI,c/(MPa·m1/2) eK/% 1 723.56 781.25 7.97 3.956 3.760 4.94 476.19 518.27 8.84 4.355 4.236 2.72 400.00 502.40 25.60 4.412 4.137 6.22 357.14 388.54 8.79 4.681 4.597 1.81 400.00 423.04 5.76 4.420 4.359 1.38 294.12 310.91 5.71 4.828 4.783 0.91 238.10 296.06 24.35 4.827 4.681 3.03 434.78 504.68 16.08 4.613 4.412 4.37 555.56 638.65 14.96 4.399 4.140 5.89 357.14 394.39 10.43 4.681 4.581 2.15 312.50 376.07 20.34 4.296 4.144 3.54 263.16 317.04 20.47 4.462 4.334 2.87 322.58 335.76 4.09 4.473 4.440 0.73 212.77 246.41 15.81 4.403 4.327 1.71 128.21 158.57 23.68 4.589 4.523 1.45 400.00 429.20 7.30 4.412 4.335 1.75 200.00 229.67 14.83 4.610 4.541 1.50 555.56 594.27 6.97 4.399 4.279 2.72 384.62 486.32 26.44 4.452 4.181 6.09 344.83 434.55 26.02 4.267 4.046 5.17 151.52 164.63 8.66 4.538 4.510 0.63 50.25 53.93 7.33 5.258 5.242 0.30 2 625.00 653.59 4.57 4.230 4.138 2.16 588.24 668.14 13.58 4.298 4.046 5.86 370.37 428.20 15.61 4.794 4.532 5.48 588.24 692.50 17.72 3.907 3.606 7.68 400.00 471.78 17.95 4.132 3.953 4.34 285.71 317.43 11.10 4.521 4.443 1.72 555.56 635.54 14.40 4.399 4.150 5.66 250.00 283.37 13.35 4.607 4.527 1.75 76.92 100.54 30.71 4.917 4.634 5.76 2 370.37 417.47 12.72 4.444 4.322 2.76 123.46 153.54 24.37 4.624 4.558 1.43 370.37 429.51 15.97 4.312 4.162 3.47 625.00 678.86 8.62 4.183 4.012 4.10 714.29 792.18 10.91 4.087 3.816 6.62 232.56 310.49 33.51 4.492 4.309 4.07 625.00 700.12 12.02 3.910 3.685 5.74 588.24 635.83 8.09 3.899 3.764 3.47 256.41 290.27 13.21 4.752 4.667 1.79 555.56 649.17 16.85 4.066 3.795 6.64 322.58 353.43 9.56 4.321 4.246 1.73 263.16 293.77 11.63 4.620 4.545 1.63 217.39 272.11 25.17 4.393 4.269 2.81 333.33 395.52 18.65 4.319 4.167 3.53 156.25 170.84 9.34 4.740 4.706 0.71 312.50 342.41 9.57 4.345 4.273 1.66 86.96 100.09 38.11 4.659 4.574 1.82 65.79 80.47 37.51 5.637 5.584 0.93 8.73 9.60 9.94 5.346 5.344 0.05 4.98 5.40 8.46 4.762 4.761 0.02 -
[1] GÓMEZ F J, ELICES M, BERTO F, et al. Local strain energy to assess the static failure of U-notches in plates under mixed mode loading [J]. International Journal of Fracture, 2007, 145(1): 29–45. DOI: 10.1007/s10704-007-9104-3. [2] COOK N G W. Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(3): 198–223. DOI: 10.1016/0148-9062(92)93656-5. [3] SOH A K, YANG C H. Numerical modeling of interactions between a macro-crack and a cluster of micro-defects [J]. Engineering Fracture Mechanics, 2004, 71(2): 193–217. DOI: 10.1016/S0013-7944(03)00097-3. [4] MISHURIS G, MOVCHAN A, MOVCHAN N, et al. Interaction of an interfacial crack with linear small defects under out-of-plane shear loading [J]. Computational Materials Science, 2012, 52(1): 226–230. DOI: 10.1016/j.commatsci.2011.01.023. [5] 董玉清, 朱哲明, 王蒙, 等. 中低速冲击载荷作用下SCT岩石试样Ⅰ型裂纹的动态扩展行为 [J]. 中南大学学报(自然科学版), 2018, 49(11): 2821–2830. DOI: 10.11817/j.issn.1672-7207.2018.11.024.DONG Y Q, ZHU Z M, WANG M, et al. Mode Ⅰ crack dynamic propagation behavior of SCT specimens under medium-low speed impact load [J]. Journal of Central South University (Science and Technology), 2018, 49(11): 2821–2830. DOI: 10.11817/j.issn.1672-7207.2018.11.024. [6] 周磊, 朱哲明, 董玉清, 等. 冲击加载下巷道内裂纹的扩展特性及破坏行为 [J]. 爆炸与冲击, 2018, 38(4): 785–794. DOI: 10.11883/bzycj-2016-0383.ZHOU L, ZHU Z M, DONG Y Q, et al. Propagation characteristics and failure behaviors of crack in tunnel under impact loads [J]. Explosion and Shock Waves, 2018, 38(4): 785–794. DOI: 10.11883/bzycj-2016-0383. [7] WANG F, WANG M, NEZHAD M M, et al. Rock dynamic crack propagation under different loading rates using improved single cleavage semi-circle specimen [J]. Applied Sciences, 2019, 9(22): 4944. DOI: 10.3390/APP9224944. [8] THEOCARIS P S, MILIOS J. Crack arrest modes of a transverse crack going through a longitudinal crack or a hole [J]. Journal of Engineering Materials and Technology, 1981, 103(2): 177–182. DOI: 10.1115/1.3224991. [9] MILIOS J, SPATHIS G. Dynamic interaction of a propagating crack with a hole boundary [J]. Acta Mechanica, 1988, 72(3/4): 283–295. DOI: 10.1007/BF01178314. [10] MURDANI A, MAKABE C, SAIMOTO A, et al. A crack-growth arresting technique in aluminum alloy [J]. Engineering Failure Analysis, 2008, 15(4): 302–310. DOI: 10.1016/j.engfailanal.2007.02.005. [11] AYATOLLAHI M R, RAZAVI S M J, YAHYA M Y. Mixed mode fatigue crack initiation and growth in a CT specimen repaired by stop hole technique [J]. Engineering Fracture Mechanics, 2015, 145: 115–127. DOI: 10.1016/j.engfracmech.2015.03.027. [12] CHEN N Z. A stop-hole method for marine and offshore structures [J]. International Journal of Fatigue, 2016, 88: 49–57. DOI: 10.1016/j.ijfatigue.2016.03.010. [13] WANG Y B, YANG R S, ZHAO G F. Influence of empty hole on crack running in PMMA plate under dynamic loading [J]. Polymer Testing, 2017, 58: 70–85. DOI: 10.1016/j.polymertesting.2016.11.020. [14] WANG M, WANG F, ZHU Z M, et al. Modelling of crack propagation in rocks under SHPB impacts using a damage method [J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(8): 1699–1710. DOI: 10.1111/ffe.13012. [15] 王飞, 王蒙, 朱哲明, 等. 冲击荷载下岩石裂纹动态扩展全过程演化规律研究 [J]. 岩石力学与工程学报, 2019, 38(6): 1139–1148. DOI: 10.13722/j.cnki.jrme.2018.1172.WANG F, WANG M, ZHU Z M, et al. Study on evolution law of rock crack dynamic propagation in complete process under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1139–1148. DOI: 10.13722/j.cnki.jrme.2018.1172. [16] FUNATSU T, KURUPPU M, MATSUI K. Effects of temperature and confining pressure on mixed-mode (Ⅰ-Ⅱ) and mode Ⅱ fracture toughness of Kimachi sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 1–8. DOI: 10.1016/j.ijrmms.2013.12.009. [17] 周磊, 朱哲明, 董玉清, 等. 动态加载率对巷道内裂纹扩展速度及动态起裂韧度的影响 [J]. 振动与冲击, 2019, 38(4): 129–136. DOI: 10.13465/j.cnki.jvs.2019.04.021.ZHOU L, ZHU Z M, DONG Y Q, et al. Effect of dynamic loading rate on crack propagation velocity and dynamic fracture toughness in tunnels [J]. Journal of Vibration and Shock, 2019, 38(4): 129–136. DOI: 10.13465/j.cnki.jvs.2019.04.021. [18] ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 423–439. DOI: 10.1016/j.ijrmms.2013.01.005. [19] JIANG F C, VECCHIO K S. Hopkinson bar loaded fracture experimental technique: a critical review of dynamic fracture toughness tests [J]. Applied Mechanics Reviews, 2009, 62(6): 060802. DOI: 10.1115/1.3124647. [20] WANG Q Z, FENG F, NI M, et al. Measurement of mode Ⅰ and mode Ⅱ rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar [J]. Engineering Fracture Mechanics, 2011, 78(12): 2455–2469. DOI: 10.1016/j.engfracmech.2011.06.004. [21] AVACHAT S, ZHOU M. High-speed digital imaging and computational modeling of dynamic failure in composite structures subjected to underwater impulsive loads [J]. International Journal of Impact Engineering, 2015, 77: 147–165. DOI: 10.1016/j.ijimpeng.2014.11.008. [22] LEE D, TIPPUR H, BOGERT P. Dynamic fracture of graphite/epoxy composites stiffened by buffer strips: an experimental study [J]. Composite Structures, 2012, 94(12): 3538–3545. DOI: 10.1016/j.compstruct.2012.05.032. [23] MANDELBROT B B. The fractal geometry of nature [M]. New York, USA: W. H. Freeman and Company, 1982. [24] THEOCARIS P S, SAKELLARIOU M. A correction model for the incompatible deformations of the shear internal crack [J]. Engineering Fracture Mechanics, 1991, 38(4/5): 231–240. DOI: 10.1016/0013-7944(91)90001-H. [25] NAGAHAMA H. Fractal scalings of rock fragmentation [J]. Earth Science Frontiers, 2000, 7(1): 169–177. DOI: 10.3321/j.issn:1005-2321.2000.01.016. [26] 谢和平. 动态裂纹扩展中的分形效应 [J]. 力学学报, 1995, 27(1): 18–27. DOI: 10.6052/0459-1879-1995-1-1995-401.XIE H P. Fractal effects of dynamic crack propagation [J]. Acta Mechanica Sinica, 1995, 27(1): 18–27. DOI: 10.6052/0459-1879-1995-1-1995-401. [27] 谢和平. 脆性材料裂纹扩展的分形运动学 [J]. 力学学报, 1994, 26(6): 757–762. DOI: 10.6052/0459-1879-1994-6-1995-606.XIE H P. Fractal kinematics of crack propagation in brittle materials [J]. Acta Mechanica Sinica, 1994, 26(6): 757–762. DOI: 10.6052/0459-1879-1994-6-1995-606. [28] 谢和平. 分形-岩石力学导论 [M]. 北京: 科学出版社, 1996: 168−261. [29] 程靳, 赵树山. 断裂力学 [M]. 北京: 科学出版社, 2006: 9−55. [30] FREUND L B. Dynamic fracture mechanics [M]. Cambridge, UK: Cambridge University Press, 1990. [31] ROSE L R F. Recent theoretical and experimental results on fast brittle fracture [J]. International Journal of Fracture, 1976, 12(6): 799–813. DOI: 10.1007/BF00034620. [32] RAVI-CHANDAR K, KNAUSS W G. An experimental investigation into dynamic fracture: I. crack initiation and arrest [J]. International Journal of Fracture, 1984, 25: 247–262.10. DOI: 10.1007/BF00963460. 期刊类型引用(1)
1. 传秀云. 石墨的纳米结构组装. 无机材料学报. 2017(11): 1121-1127 . 百度学术
其他类型引用(2)
-