• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

高压气体驱动二级轻气炮发射过程的数值模拟方法及应用

陈履坦 何起光 陈小伟

王礼立, 胡时胜, 杨黎明, 董新龙, 王晖. 聊聊动态强度和损伤演化[J]. 爆炸与冲击, 2017, 37(2): 169-179. doi: 10.11883/1001-1455(2017)02-0169-11
引用本文: 陈履坦, 何起光, 陈小伟. 高压气体驱动二级轻气炮发射过程的数值模拟方法及应用[J]. 爆炸与冲击, 2022, 42(12): 124201. doi: 10.11883/bzycj-2022-0054
Wang Lili, Hu Shisheng, Yang Liming, Dong Xinlong, Wang Hui. Talk about dynamic strength and damage evolution[J]. Explosion And Shock Waves, 2017, 37(2): 169-179. doi: 10.11883/1001-1455(2017)02-0169-11
Citation: CHEN Lütan, HE Qiguang, CHEN Xiaowei. Numerical modeling on the launch process of a two-stage light gas gun using high-pressure gas as the driving source[J]. Explosion And Shock Waves, 2022, 42(12): 124201. doi: 10.11883/bzycj-2022-0054

高压气体驱动二级轻气炮发射过程的数值模拟方法及应用

doi: 10.11883/bzycj-2022-0054
基金项目: 国家自然科学基金(11627901)
详细信息
    作者简介:

    陈履坦(1996- ),男,博士研究生,3120205137@bit.edu.cn

    通讯作者:

    陈小伟(1967- ),男,博士,教授,chenxiaoweintu@bit.edu.cn

  • 中图分类号: O313.4

Numerical modeling on the launch process of a two-stage light gas gun using high-pressure gas as the driving source

  • 摘要: 二级轻气炮是一种常见的超高速发射装置,多年来其数值研究大多采用简化一维模型,鲜有三维有限元模型。以14 mm口径高压气体驱动二级轻气炮为研究对象,采用耦合欧拉-拉格朗日(coupled Eulerian-Lagrangian, CEL)算法,根据膜片破裂与否,将二级轻气炮模型解耦为2个分级三维数值模型。为确定实验难以测得的参数(材料摩擦因数和膜片破膜压力),设计正交试验,拟合确定活塞与泵管间摩擦因数为0.82,弹丸与发射管摩擦因数为0.30和膜片破膜压力为11.73 MPa。正交结果表明,摩擦因数对计算结果影响较大,在高压气体驱动二级轻气炮的计算中不应忽略。通过上述方法建立数字化高压气体驱动二级轻气炮,完整复现气炮发射过程,计算的弹丸终速与实验结果吻合度高。选取验证工况详细分析了气炮发射过程内流场变化,并呈现关键时刻的压力云图。该气炮简化方法、分级思想和关键参数确认方法可推广应用于固体发射药驱动、爆轰驱动等其他驱动形式的二级/多级轻气炮。
  • 图  1  14 mm口径高压气体驱动二级轻气炮示意图

    Figure  1.  Schematics of a 14-mm-caliber two-stage light gas gun based on high-pressure gas driving

    图  2  14 mm口径高压气体驱动二级轻气炮二维模型

    Figure  2.  Two-dimensional models for the 14-mm-caliber two-stage light gas gun

    图  3  气炮模型

    Figure  3.  Light-gas gun models

    图  4  活塞模型

    Figure  4.  The piston model

    图  5  弹丸模型

    Figure  5.  The projectile model

    图  6  0~7.50 ms活塞前后压力云图

    Figure  6.  Pressure nephograms around the piston at 0−7.50 ms

    图  7  泵管和锥段35.30~37.70 ms压力云图

    Figure  7.  Pressure nephograms in the pump tube and the tapered section at 35.30−37.70 ms

    图  8  活塞的速度/位移-时间曲线

    Figure  8.  Velocity- and displacement-time curves of the piston

    图  9  膜片处的压力-时间曲线

    Figure  9.  Pressure-time curve at the diaphragm

    图  10  二级模型0~1.95 ms的压力云图

    Figure  10.  Pressure nephograms of the second-stage model at 0−1.95 ms

    图  11  活塞的速度和位移时间里程曲线

    Figure  11.  Velocity- and displacement-time curves of the piston

    图  12  弹丸尾部2.20~3.20 ms的压力云图

    Figure  12.  Pressure nephograms at the tail of the projectile at 2.20-3.20 ms

    图  13  弹丸时间-速度/弹尾压力曲线

    Figure  13.  Pressure-time curve at the tail of the projectile and velocity-time curve of the projectile

    图  14  等分均布观测点和弹丸弹尾的压力变化对比

    Figure  14.  Comparison of pressure changes between the evenly-distributed observation points and the projectile tail

    图  15  0~39.10 ms锥段气体温度曲线

    Figure  15.  Temperature-time curve of the gas in the tapered section at 0−39.10 ms

    图  16  36.90~37.70 ms锥段瞬态温度场

    Figure  16.  Transient temperature fields in the tapered section at 36.90−37.70 ms

    表  1  14 mm口径高压气体驱动二级轻气炮几何参数

    Table  1.   The geometrical parameters of the 14-mm-caliber two-stage light-gas gun

    部件长度/mm内径/mm入锥角度/(°)
    高压气室72090
    泵管1182060
    发射管660014
    锥段32014~604.5
    下载: 导出CSV

    表  2  14 mm高压气体驱动二级轻气炮的实验参数

    Table  2.   Experimental parameters of the 14-mm-caliber two-stage light-gas gun

    实验高压气室初始压力/MPa泵管初始压力/MPa活塞质量/g弹丸质量/g膜片厚度/mm弹丸终速/(m·s−1
    115.70.0417331.510.43 846
    222.10.0457331.550.44 155
    321.70.0477332.430.43 571
    下载: 导出CSV

    表  3  Johnson-Cook模型材料参数[20-21]

    Table  3.   Material parameters for the Johnson-Cook model[20-21]

    材料密度/(kg·m−3泊松比杨氏模量/GPa初始屈服应力/MPa硬化常数/MPa应变硬化指数温度系数熔化温度/K
    4340不锈钢79000.33200280802.50.62211673
    27900.3373.13696840.341.71000
    下载: 导出CSV

    表  4  气体材料参数

    Table  4.   Material parameters for gases

    气体R/(J·(mol·K)−1环境压力/Pa比定容热容/(J·(kg·K)−1
    氦气207703116
    氮气298.30743
    下载: 导出CSV

    表  5  正交试验的因素及水平

    Table  5.   Factors and levels of orthogonal tests

    水平μ1μ2p/MPa
    10.30.110
    20.50.220
    30.70.330
    40.90.440
    下载: 导出CSV

    表  6  正交工况及弹丸终速

    Table  6.   The orthogonal cases as well as the final velocities of projectiles

    计算工况μ1μ2p/MPav/(m·s−1计算工况μ1μ2p/MPav/(m·s−1
    试验1试验2试验3试验1试验2试验3
    10.30.110451748354183 90.70.130364544284597
    20.30.220475149594243100.70.240423042794622
    30.30.330479751944142110.70.310356840363396
    40.30.440478250394180120.70.420346940193264
    50.50.120445343964184130.90.140458147553842
    60.50.210408142903611140.90.230441245504030
    70.50.340399743753887150.90.320423244513786
    80.50.430419740293720160.90.410384038433742
    下载: 导出CSV

    表  7  正交试验结果分析

    Table  7.   Analysis of orthogonal test results

    v/(m·s−1试验 1 试验 2 试验 3
    μ1μ2pμ1μ2pμ1μ2p
    k14711.754299.004001.50 5006.754603.504251.00 4187.004201.503688.50
    k24182.004368.504226.254272.504519.504456.253850.504126.503869.25
    k33728.004148.504262.754190.504514.004550.253969.753802.754122.25
    k44266.254072.004397.504399.754232.504384.003805.503682.004132.75
    R983.75296.50396.00816.25371.00299.25 381.50519.50444.25
    下载: 导出CSV

    表  8  观测点的参数及波阵面平均速度

    Table  8.   Parameters for observation points and mean wavefront velocities at observation points

    观测点S/mΔS/mt/msΔt/msc/(m·s−1)观测点S/mΔS/mt/msΔt/msc/(m·s−1)
    000 63.2600.6502.350.203250
    10.0180.0180.050.0536073.9000.6402.500.154267
    20.6700.6521.401.3548384.5500.6502.650.154333
    31.3100.6401.750.35182995.2000.6502.800.154333
    41.9600.6501.950.203250105.8500.6503.000.203250
    52.6100.6502.150.203250116.4900.6403.150.154267
    下载: 导出CSV
  • [1] 龚自正, 杨继运, 张文兵, 等. 航天器空间碎片超高速撞击防护的若干问题 [J]. 航天器环境工程, 2007, 24(3): 125–130. DOI: 10.3969/j.issn.1673-1379.2007.03.001.

    GONG Z Z, YANG J Y, ZHANG W B, et al. Spacecraft protection from the hypervelocity impact of space meteoroid and orbital debris [J]. Spacecraft Environment Engineering, 2007, 24(3): 125–130. DOI: 10.3969/j.issn.1673-1379.2007.03.001.
    [2] BARKER L M, CHHABILDAS L C, TRUCANO T G, et al. High gas pressure acceleration of flier plates-experimental techniques [J]. International Journal of Impact Engineering, 1990, 10(1/2/3/4): 67–80. DOI: 10.1016/0734-743X(90)90049-2.
    [3] NONAKA S, TAKAYAMA K, KIBE S. Hypervelocity impact tests with bumper-walled structure against space debris [C]//36th AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA: AIAA, 1998: 800. DOI: 10.2514/6.1998-800.
    [4] 刘海明. 二级轻气炮内弹道过程计算机仿真 [D]. 南京: 南京理工大学, 2006.

    LIU H M. Computer emulation of interior ballistics process of two-stage light gas gun [D]. Nanjing, Jiangsu, China: Nanjing University of Science and Technology, 2006.
    [5] 杨继运. 二级轻气炮模拟空间碎片超高速碰撞试验技术 [J]. 航天器环境工程, 2006, 23(1): 16–22. DOI: 10.3969/j.issn.1673-1379.2006.01.003.

    YANG J Y. Simulation of space debris hypervelocity impact using two stage light gas gun [J]. Spacecraft Environment Engineering, 2006, 23(1): 16–22. DOI: 10.3969/j.issn.1673-1379.2006.01.003.
    [6] 张向荣, 朱玉荣, 林俊德, 等. 压缩氮气驱动的高速气炮实验技术 [J]. 航天器环境工程, 2015, 32(4): 343–348. DOI: 10.3969/j.issn.1673-1379.2015.04.001.

    ZHANG X R, ZHU Y R, LIN J D, et al. Experimental technique of high velocity gas gun driven by compressed nitrogen [J]. Spacecraft Environment Engineering, 2015, 32(4): 343–348. DOI: 10.3969/j.issn.1673-1379.2015.04.001.
    [7] ANGRILLI F, PAVARIN D, DE CECCO M, et al. Impact facility based upon high frequency two-stage light-gas gun [J]. Acta Astronautica, 2003, 53(3): 185–189. DOI: 10.1016/S0094-5765(02)00207-2.
    [8] 董石, 孟川民, 肖元陆, 等. 反应气体驱动二级轻气炮技术的初步研究 [J]. 高压物理学报, 2017, 31(2): 182–186. DOI: 10.11858/gywlxb.2017.02.011.

    DONG S, MENG C M, XIAO Y L, et al. Preliminary study of two-stage light gas gun using reactive gas as driving energy [J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 182–186. DOI: 10.11858/gywlxb.2017.02.011.
    [9] TANG W Q, WANG Q, WEI B C, et al. Performance and modeling of a two-stage light gas gun driven by gaseous detonation [J]. Applied Sciences, 2020, 10(12): 4383. DOI: 10.3390/app10124383.
    [10] 张德志, 唐润棣, 林俊德, 等. 新型气体驱动二级轻气炮研制 [J]. 兵工学报, 2004, 25(1): 14–18. DOI: 10.3321/j.issn:1000-1093.2004.01.004.

    ZHANG D Z, TANG R D, LIN J D, et al. Development of a new type gas-driven two-stage light gas gun [J]. Acta Armamentarii, 2004, 25(1): 14–18. DOI: 10.3321/j.issn:1000-1093.2004.01.004.
    [11] 尚甲豪, 邢好运, 汪球, 等. 气相爆轰驱动二级轻气炮内弹道数值模拟 [J]. 力学学报, 2022, 54(3): 810–821. DOI: 10.6052/0459-1879-21-437.

    SHANG J H, XING H Y, WANG Q, et al. Numerical research on interior ballistics of the two-stage light gas gun driven by gaseous detonation [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 810–821. DOI: 10.6052/0459-1879-21-437.
    [12] 林俊德. 非火药驱动的二级轻气炮的发射参数分析 [J]. 爆炸与冲击, 1995, 15(3): 229–240.

    LIN J D. A analysis of launching parameters for a two stage lioht gas gun not driven by powder [J]. Explosion and Shock Waves, 1995, 15(3): 229–240.
    [13] SEIGEL A E. The theory of high speed guns [R]. Paris, France: Advisory Group for Aerospace Research and Development, 1965.
    [14] GROTH C P T, GOTTLIEB J J. Numerical study of two-stage light-gas hypervelocity projectile launchers: UTIAS Report, No. 327 [R]. Toronto, Canada: University of Toronto, 1988.
    [15] PIACESI R, GATES D F, SEIGEL A E. Computer analysis of two-stage hypervelocity model launchers [R]. White Oak, Maryland, USA: Naval Ordnance Laboratory, 1963. DOI: 10.21236/ad0408675.
    [16] 胡天翔, 张庆明, 薛一江, 等. 初始条件对氢氧爆轰气体炮内弹道性能的影响规律 [J]. 高压物理学报, 2021, 35(6): 063301. DOI: 10.11858/gywlxb.20210779.

    HU T X, ZHANG Q M, XUE Y J, et al. Influence of initial conditions on the interior ballistic performance of hydrogen-oxygen detonation gas gun [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 063301. DOI: 10.11858/gywlxb.20210779.
    [17] NOH W F. CEL: a time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code [R]. Livermore, USA: Lawrence Radiation Laboratory, 1963.
    [18] 黄洁, 梁世昌, 李海燕, 等. 二级轻气炮发射过程内弹道数值计算研究 [J]. 空气动力学学报, 2013, 31(5): 657–661. DOI: 10.7638/kqdlxxb-2012.0055.

    HUANG J, LIANG S C, LI H Y, et al. Numerical research on interior ballistics of the launch process of two-stage light gas gun [J]. Acta Aerodynamica Sinica, 2013, 31(5): 657–661. DOI: 10.7638/kqdlxxb-2012.0055.
    [19] SYONO Y, GOTO T. A two-stage light gas gun for shock wave research [J]. The Science Reports of the Research Institutes, Tohoku University, Serial A:Physics, Chemistry and Metallurgy, 1980, 29: 17–31.
    [20] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering fracture mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [21] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and hightemperatures [C]//The Seventh International Symposium on Ballistics. The Hague, Netherlands, 1983.
    [22] Grassia L, DAMORE A, SIMON S L. On the viscoelastic Poisson’s ratio in amorphous polymers [J]. Journal of Rheology, 2010, 54(5): 1009–1022. DOI: 10.1122/1.3473811.
    [23] SPAN R, LEMMON E W, JACOBSEN R T, et al. A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa [J]. Journal of Physical and Chemical Reference Data, 2000, 29(6): 1361–1433. DOI: 10.1063/1.1349047.
    [24] MCCARTY R D, ARP V D. A new wide range equation of state for helium [M]//FAST R W. Advances in Cryogenic Engineering. Boston, USA: Springer, 1990: 1465–1475.
    [25] ANGRILLI F, DE CECCO M, PAVARIN D. Diagnostic procedure for two-stage light gas gun pellet injector by means of numerical analysis [J]. Fusion Technology, 1998, 34(3P2): 430–434. DOI: 10.13182/FST98-A11963651.
  • 加载中
推荐阅读
考虑裂隙粗糙度的岩体单轴压缩动态损伤模型
刘红岩 等, 爆炸与冲击, 2025
考虑动态拉压比影响的岩石损伤本构模型
胡学龙 等, 爆炸与冲击, 2025
高温大理岩的动态能量耗散机理及破坏特征
张旭 等, 爆炸与冲击, 2025
循环冲击荷载作用下单节理岩体的动态力学行为
刘康琦 等, 爆炸与冲击, 2025
高寒地区混凝土抗冻耐久性及损伤模型
武 金 等, 西安工业大学学报, 2023
复杂方解石脉充填煤岩细观损伤演化特性研究
WU Zhonghu et al., 油气藏评价与开发, 2024
高温-冲击双循环下花岗岩的动力学特性与损伤
郭昊 等, 高压物理学报, 2025
Strategies for targeting cytokines in inflammatory bowel disease
Neurath, Markus F., NATURE REVIEWS IMMUNOLOGY, 2024
Dynamic evolution mechanism of the fracturing fracture systemdenlightenments from hydraulic fractu ring physical experiments and finite element numerical simulation
PETROLEUM SCIENCE, 2024
Equivalent method of stiffened plates for dynamic response and damage assessment under internal blast
STRUCTURES, 2025
Powered by
图(16) / 表(8)
计量
  • 文章访问数:  546
  • HTML全文浏览量:  212
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-17
  • 修回日期:  2022-08-30
  • 网络出版日期:  2022-10-27
  • 刊出日期:  2022-12-08

目录

    /

    返回文章
    返回