Application of high-speed 3D-DIC measurement technology in perforation test of armor steel
-
摘要: 数字图像相关(digital image correlation, DIC)技术作为一种非接触、非干涉的全场无损光学量测技术,可获取材料表面的动态变形信息和破坏过程。为了评估装甲钢的抗弹性能并探索高速三维数字图像相关(3D-DIC)技术在钢板贯穿试验测试中的应用,基于氢氧爆轰驱动弹道枪开展了7发15 mm口径可变形弹体以不同速度(255~568 m/s)冲击不同厚度(5、8和10 mm)高强高硬装甲钢板的试验,并结合帧率为144 000 s−1的高速3D-DIC测试技术获取了靶板的离面位移和应变时程。随后,基于前期标定并验证的装甲钢本构模型参数,对上述试验进行了数值模拟。通过对比弹体残余速度和长度验证了有限元分析方法的可靠性。进一步通过对比试验与数值模拟得到的靶背离面位移时程曲线和不同时刻靶背的应变云图,验证了高速3D-DIC测试结果的准确性。最后,对比分析了靶板最大离面位移与弹体冲击速度和装甲钢板厚度的关系。高速3D-DIC测试技术的应用可为相关试验测试提供参考,靶板最大离面位移分析结果可为屏障类防护结构的分析验证和优化设计提供试验依据。Abstract: As a non-contact, non-interference full-field non-destructive optical measurement technology, digital image correlation (DIC) technology can obtain the dynamic deformation information on the surface of materials and failure process. Aiming to evaluate the ballistic performance of armor steel and explore the application of high-speed three-dimensional digital image correlation (3D-DIC) technology in perforation test of armor steel plates, impact tests by seven shots on high strength and hardness armor steel plates with different thicknesses were conducted, in which 15-mm-caliber deformable projectile at various velocities were fired by using hydrogen-oxygen detonation ballistic gun, whilst the high-speed 3D-DIC measurement technology with frame rate of 144000 s−1 was adopted to extract the out-of-plane displacement and strain field-time histories of the target. Then, based on the calibrated and validated constitutive model parameters of armor steel obtained in previous work, the current impact test is numerically simulated and the corresponding finite element model is validated by comparing with the simulated residual projectile velocities and lengths with test data. Furthermore, by comparing the out-of-plane displacement-time histories and strain contours at the rear of target obtained by numerical simulation and test, the accuracy of results obtained by high-speed 3D-DIC is validated. Finally, the relationship between maximum out-of-plane displacement with projectile impact velocity and armor steel plate thickness is analyzed. The results show that the relatively smaller out-of-plane displacements were obtained due to the shear plugging failure for 8 mm-thick targets. Under the identical impact energy, the unperforated targets with the thickness of 10 mm absorb the most of energy and exhibit larger out-of-plane displacements compared with those in targets with the thicknesses of 5 mm and 8 mm. The application of high-speed 3D-DIC technology in this study can provide a reference for related tests, and the analysis result of maximum out-of-plane displacement of target can be used as the experimental basis for the analysis, verification and optimal design in protective barrier structures.
-
Key words:
- high-speed 3D-DIC /
- armor steel /
- perforation test /
- residual velocity /
- out-of-plane displacement
-
随着计算机技术的发展,数值模拟已经成为复杂系统研究及设计的重要手段。以往,研究人员常常将材料参数、几何尺寸等作为确定性的输入参数,代入程序进行数值模拟,从而得到确定性的结果。然而实际上,数值模拟过程中存在各种不确定性来源。近十几年,不确定度量化(uncertainty quantification, UQ)方法发展迅速,逐渐成为数值模拟研究的热点[1-2]。不确定度量化主要关注如何表征、量化、减小数值模拟过程中的各种不确定性来源,是实现高置信度数值模拟的有效手段。在进行不确定度量化分析时,为了研究输入参数引入的不确定性,每个输入参数常常需要人为给定概率分布。输入参数概率分布的选择很可能会对分析结果有直接影响,为了减少分布选择的主观性,输入参数的概率分布最好能够由试验数据提供。
目前,圆筒试验是评估炸药的做功能力、确定爆轰产物状态方程参数的基准试验,已经得到了广泛应用[3-8]。标准的圆筒试验方法主要采用电离探针测量炸药爆速,用高速扫描相机记录定常滑移爆轰驱动下圆筒壁的径向膨胀距离随时间的变化关系,并利用经验公式计算圆筒壁的膨胀速度和比动能等表征炸药做功能力的特征量,最后利用这些试验结果标定JWL(Jones-Wilkins-Lee)状态方程的参数[9-10]。本文中,利用贝叶斯方法对圆筒试验JWL状态方程参数进行标定,给出标定参数的估计值,得到标定参数的后验分布,然后将该后验分布作为不确定度量化分析时输入参数的初始分布,以减小输入参数分布选择引入的不确定性。
1. 圆筒试验
圆筒试验的试验装置示意图如图 1所示,高速相机VISAR从狭缝扫描记录的是圆筒壁外表面的径向膨胀过程,通过对照片底片的处理获得圆筒壁的径向膨胀位移和时间的关系。得到的观测数据如图 2所示。炸药爆轰产物JWL状态方程形式和等熵条件如下:
{p=A[1−ω/(R1V)]e−R1V+B[1−ω/(R2V)]e−R2V+ωe/VpS=Ae−R1V+Be−R2V+C/Vω+1 (1) 式中:p为压力,下标“S”表示熵,V为相对比容,e为初始体积能量,A、B、C、R1、R2和ω为待标定参数。利用JWL状态方程在C-J点的特性,由圆筒试验和相关试验的观测数据得到爆压、爆速、密度、内能和参数ω,再构造代数方程组,给定R1和R2,联立求解A、B和C[11]。
2. 贝叶斯标定方法
M.Kennedy和A.O‘Hagan[12]提出用贝叶斯方法进行参数标定和预测。由此发展出来一系列方法,统称为KOH方法[13-15]。KOH方法用高斯过程(Gaussian process, GP)对计算结果和观测结果进行建模,同时对模型偏差进行建模。KOH方法的主要思想是用高斯过程建立代理模型,然后用代理模型计算后验分布和标定参数。下面简单介绍KOH方法的框架,更多技术细节参见文献[12]。
2.1 定义和统计模型
令X=(X(1), …, X(qX))为qX维控制变量,θ=(θ(1), …, θ(qθ))为qθ维标定参数,Y为数值模拟计算的输出结果,Z为试验观测结果。KOH模型如下:
yi=fC(x∗i,si)i=1,⋯,M (2) zj=ρfC(xj,θ)+b(xj)+εjj=1,⋯,N (3) 式中:fC(·)为计算模型,b(·)为模型偏差,εj为观测误差,ρ为回归系数,M为数值模拟样本量,N为试验样本量,xi*为控制变量在第i次数值模拟中的取值,xj为控制变量在第j次实验中的取值(按照数理统计中约定,采用大写字母表示随机变量,相应的小写字母表示该随机变量的取值,本文中,“X”、“Y”、“Z”、“T”、“R1”、“R2”均采用该约定)。为了得到数值模拟的结果,需要给标定参数赋值,令s表示数值模拟时输入的标定参数,θ表示标定参数的真实值,以便于区分。
假设εj服从均值为零、方差为λ的正态分布;fC(·)用高斯过程建模,均值函数为m1(x, s),协方差函数为c1(·, ·);模型偏差b(x)也用高斯过程建模,均值函数为m2(x),协方差函数为c2(·, ·)。假设均值函数和协方差函数的形式如下:
mi(⋅)=hi(⋅)Tβii=1,2 (4) ci((xk,sk),(xl,sl))=σ2iexp{−qX∑j=1ωXij(x(j)k−x(j)l)2−qθ∑r=1ωθir(s(r)k−s(r)l)2}i=1,2 (5) 式中:hi(·)为统计建模时任意给定的连接函数,σi2、ωXi、ωθi为协方差函数建模中需要估计的未知参数。令ψ=(ψ1, ψ2),ψi是协方差函数ci(·, ·)中的超参数(σi2, ωXi, ωθi),i=1, 2。KOH模型的超参数包括β=(β1, β2)和φ=(ρ, λ, ψ), 则全部要估计的参数为(θ, β, φ)。
2.2 数据结构
数据包括观测数据z和数值模拟结果y, 即dT=(zT, yT)。数值模拟过程中输入变量的取值记为D1={(x1*, s1), …, (xM*, sM)},试验数据控制变量的取值记为D2={x1, …, xN},与D1相对应,可以将D2扩充为D2(θ)={(x1, θ), …, (xN, θ)}。
2.3 后验分布
令先验分布P(β)∝1。根据贝叶斯理论,在给定先验分布的条件下,后验分布为:
P(θ,β,φ|d)∝P(θ)P(φ)f(d;md(θ),Vd(θ)) (6) 式中:f(d; md(θ), Vd(θ))是多元正态分布N(md(θ), Vd(θ))的密度函数,且
md(θ)=E(d|θ,β,φ)=H(θ)β=(H1(D1)0ρH1(D2(θ))H2(D2))β (7) Vd(θ)=V(d|θ,β,φ)=(V1(D1)ρC1(D1,D2(θ))TρC1(D1,D2(θ))λIN+ρ2V1(D2(θ))+V2(D2)) (8) 式中:H1、H2为由连接函数hi构成的向量,V1(D1)为由集合D1中数据构成的方差矩阵,V2(D2)为由集合D2中数据构成的方差矩阵,C1为D1和D2中数据构成的协方差矩阵,IN为N维单位矩阵。
2.4 计算步骤
直接计算式(6)中的后验分布较困难,因此将计算过程分为4个步骤:步骤1和步骤2是建立GP模型,步骤3是用建立的GP模型计算后验分布,步骤4是利用步骤3得到的后验分布标定参数。
步骤1:建立GP代理模型,估计β1和c1(·, ·)的超参数ψ1。用数值模拟所得数据y估计β1和ψ1,得到估计值ˆβ1和ˆψ1。步骤2:建立观测数据的GP代理模型,估计ρ、λ、β2和c2(·, ·)的超参数ψ2。在ˆβ1和ˆψ1给定的条件下,用观测数据z估计ρ、λ、β2和c2(·)的超参数ψ2,从而得到估计值ˆβ=(ˆβ1,ˆβ2)和ˆφ=(ˆρ,ˆλ,ˆψ)。步骤3:计算标定参数θ的后验分布。由于P(θ|φ=ˆφ,d)∝P(θ,ˆφ|d),因此通过计算P(θ,ˆφ|d)即可得到θ的后验分布。步骤4:利用θ的后验分布标定参数。标定参数的估计可以定义为后验分布的均值ˆθ(mean)、中位数ˆθ(mid)或最大概率值ˆθ(max),其中ˆθ(max)也称为最大后验估计(maximum posterior estimates, MPE)。
3. JWL状态方程参数的标定
采用KOH贝叶斯方法标定圆筒试验JWL状态方程参数。将标定参数记为(R1, R2);将时间视为设计变量,记为T;同时令M=30, N=10。数值计算过程中,R1和R2的抽样区间分别为[4.3, 5.5]和[0.8, 1.5],用拉丁超立方抽样(latin hypercube sample, LHS)方法得到M组参数并代入模拟程序进行计算,得到M条径向半径随时间变化的曲线。对设计变量T进行LHS抽样得到M个样本。将T和(R1, R2)的样本随机配对得到模拟计算的输入数据D1={(t1*, R11, R21), …, (tM*, R1M, R2M)}。D1对应的计算输出结果为y={y1, …, yM}。需要注意的是,每次数值计算的结果都是径向半径随时间变化的曲线,这里只是从曲线上随机取一个抽样点作为输出结果。对时间变量T随机抽样得到N个样本,即D2={t1, …, tN}。将D2扩充为D2(r1, r2)={(t1, r1, r2), …, (tN, r1, r2)},其中(r1, r2)是标定参数的真实值。D2(r1, r2)对应的径向半径观测数据为z={z1, …, zN}。假设(R1, R2)的先验分布为均匀分布,即对(R1, R2)没有任何知识;超参数ψ的先验分布为标准正态分布。数值模拟使用的计算程序为由北京应用物理与计算数学研究所自主研制的相容拉氏流体动力学工具包CHAP (compatible hydrodynamics analysis program)[16]。
下面分别采用两个模型进行建模,其主要区别在于模型中是否包含偏差。模型1是KOH模型的通用形式,如式(2)~(3)所示;模型2是KOH模型的特殊形式,相当于在模型1的基础上令ρ=1,b(xj)≡0,此时式(3)可以简化为:
zj=fC(xj,θ)+εjj=1,⋯,N (9) 按照第2.4节中的4个步骤依次进行计算。第1步是建立数值模拟的GP代理模型。GP代理模型中参数的估计值分别为ˆβ1=3.090,ˆσ21=2.296,ˆωX1=0.603,ˆωR11=0.064,ˆωR21=0.059。为检验GP代理模型预测的能力,重新随机抽样4组(R1, R2)样本代入数值模拟程序进行计算,将计算得到的结果和采用GP模型预测的结果进行比较,如图 3所示。从图 3可以看出:代理模型预测曲线和数值计算的曲线基本重合,说明代理模型的预测足够精确。第2步是建立观测数据的GP代理模型。模型1中模型参数的估计值分别为ˆρ=1.057,ˆλ=1.810,ˆβ2=−0.607,ˆσ22=1.585,ˆωX2=2.220。由于模型2忽略了模型偏差并且ρ=1,所以该步骤中只需要估计λ,估计值为ˆλ=2.608×10−5。第3步是计算标定参数的后验分布。图 4给出了标定参数(R1, R2)的后验概率分布等高线,其中后验概率共分为9个概率区间,分别由9种颜色进行区分,从小到大依次用Pk (k=1, …, 9)表示,P9表示最大概率区间的值域。图 4(a)为采用模型1得到的后验概率分布,可以看出,概率分布从右下角向左上角逐级递增,概率最大区域P9位于左上角;图 4(b)为采用模型2得到的后验概率分布,可以看出,概率分布从右下角和左边向中间区域逐级递增,P9近似位于中间位置。第4步是标定参数。由图 4可知:模型1的MPE为ˆR(max)1=4.68258,ˆR(max)2=1.31066;模型2的MPE为ˆR(max)1=4.74985,ˆR(max)2=1.10314。两个模型的MPE均近似位于P9区域的中心位置。
图 5为模型1和模型2的预测效果,其中标定结果(红线)是将MPE代入数值模拟程序计算得到,预测结果(绿线)采用观测数据的GP代理模型计算得到,试验结果用黑线表示。图 5显示:两个模型的预测结果均与试验结果符合很好,说明建立的代理模型都能够比较精确地描述试验数据。模型2中试验结果和标定结果符合得比较好,表明标定的参数值是最佳拟合的估计;但是,当t>39μs时,模型1的标定结果和试验结果差异逐渐增大。由于数值模拟和基于观测数据代理模型的预测(即ˆfC(xj,ˆθ)和ˆfC(xj,ˆθ)+ˆb(xj))都足够精确,所以两者的差异即为模型偏差的预测ˆb(x),说明模型1标定的参数值是“调和”了模型偏差ˆb(x)和标定参数^θ 的最佳估计。
4. 结论
(1) 用KOH贝叶斯方法标定圆筒试验JWL状态方程的参数R1和R2,得到了标定参数的估计值和后验分布,并将后验分布作为子系统级(或系统级)复杂系统数值模拟不确定度量化分析的输入参数的初始分布,以尽可能地减少分布选择引入的认知不确定性。(2)分析了两种KOH统计模型假设对标定参数估计值和后验分布的影响。从参数标定的角度分析,模型2得到的估计值更好;从不确定度量化的角度分析,由于模型1还分析了模型偏差引入的不确定性,因此模型1更合适。
-
表 1 试验数据
Table 1. Test data
试验 板厚/mm v0/(m·s−1) vr/(m·s−1) Mr/g Lr/mm 1 8 255 0 109.4 81 2 8 335 127 109.6 79 3 8 406 111 91.0 67 4 8 479 292 95.3 70 5 8 568 368 − − 6 5 491 431 112.4 87 7 10 489 − 73.5 58 表 2 三个位置点处不同时刻的离面位移
Table 2. The out-of-plane displacement of three points at various times
试验 Out-of-plane displacement/mm 62.5 μs 125 μs 173.6 μs 点 A 点 B 点 C 点 A 点 B 点 C 点 A 点 B 点 C 1 1.536 0.829 0.365 4.848 3.376 2.301 6.302 4.961 3.932 2 2.555 1.359 0.560 5.677 4.076 2.699 6.593 5.213 4.070 4 3.237 1.665 0.702 5.856 4.186 2.947 6.813 5.306 4.202 5 4.906 2.461 1.014 − 5.043 3.704 − 6.156 4.887 6 2.981 1.659 0.352 − 2.979 1.674 4.330 3.519 2.319 7 3.237 2.077 1.290 6.791 5.395 4.313 8.503 7.070 6.008 注:“−”表示由于散斑脱落导致无法读取位移值。 表 3 弹靶J-C本构模型参数
Table 3. J-C constitutive model parameters of projectile and target
强度参数 损伤参数 状态方程参数 A/MPa B/MPa n C m D1 D2 D3 D4 D5 c/(m∙s−1) s1 s2,s3 γ0 a 1230 1647 0.4985 0.013 1.0 0.696 1.827 −2.184 −0.05 0 4578 1.33 0 1.67 0.43 -
[1] FRAS T, ROTH C C, MOHR D. Fracture of high-strength armor steel under impact loading [J]. International Journal of Impact Engineering, 2018, 111: 147–164. DOI: 10.1016/j.ijimpeng.2017.09.009. [2] FRAS T, ROTH C C, MOHR D. Dynamic perforation of ultra-hard high-strength armor steel: impact experiments and modeling [J]. International Journal of Impact Engineering, 2019, 131: 256–271. DOI: 10.1016/j.ijimpeng.2019.05.008. [3] CHOUDHARY S, SINGH P K, KHARE S, et al. Ballistic impact behaviour of newly developed armour grade steel: an experimental and numerical study [J]. International Journal of Impact Engineering, 2020, 140: 103557. DOI: 10.1016/j.ijimpeng.2020.103557. [4] CHEVALIER L, CALLOCH S, HILD F, et al. Digital image correlation used to analyze the multiaxial behavior of rubber-like materials [J]. European Journal of Mechanics - A/Solids, 2001, 20(2): 169–187. DOI: 10.1016/S0997-7538(00)01135-9. [5] MENG S Q, LI J M, LIU Z H, et al. Study of flexural and crack propagation behavior of layered fiber-reinforced cementitious mortar using the digital image correlation (DIC) technique [J]. Materials, 2021, 14(6): 4700. DOI: 10.3390/ma14164700. [6] 杨洋, 孙炜, 王亮, 等. 基于DIC方法的TC4钛合金高温拉伸试验 [J]. 材料热处理学报, 2021, 42(2): 44–51. DOI: 10.13289/j.issn.1009-6264.2020-0378.YANG Y, SUN W, WANG L, et al. High temperature tensile test of TC4 titanium alloy based on digital image correlation method [J]. Transactions of Materials and Heat Treatment, 2021, 42(2): 44–51. DOI: 10.13289/j.issn.1009-6264.2020-0378. [7] 陈学文, 白荣忍, 刘佳琪, 等. 基于数字图像相关技术的X12合金钢高温损伤模型试验验证方法 [J]. 材料热处理学报, 2021, 42(8): 163–169. DOI: 10.13289/j.issn.1009-6264.2021-0073.CHEN X W, BAI R R, LIU J Q, et al. High temperature damage model test verification method of X12 alloy steel based on digital image correlation technology [J]. Transactions of Materials and Heat Treatment, 2021, 42(8): 163–169. DOI: 10.13289/j.issn.1009-6264.2021-0073. [8] 徐纪鹏, 董新龙, 付应乾, 等. 不同加载边界下混凝土巴西劈裂过程及强度的DIC实验分析 [J]. 力学学报, 2020, 52(3): 864–876. DOI: 10.6052/0459-1879-19-303.XU J P, DONG X L, FU Y Q, et al. Experimental analysis of process and tensile strength for concrete Brazilian splitting test with different loading boundaries by DIC method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 864–876. DOI: 10.6052/0459-1879-19-303. [9] 杨国梁, 毕京九, 郭伟民, 等. 加载角度对层理页岩裂纹扩展影响的实验研究 [J]. 爆炸与冲击, 2021, 41(9): 093101. DOI: 10.11883/bzycj-2021-0097.YANG G L, BI J J, GUO W M, et al. Experimental study on the effect of loading angle on crack propagation in bedding shale [J]. Explosion and Shock Waves, 2021, 41(9): 093101. DOI: 10.11883/bzycj-2021-0097. [10] 宋海鹏, 刘长春. 基于数字图像相关的预腐蚀2024-T4铝合金疲劳开裂实验 [J]. 航空材料学报, 2020, 40(2): 43–52. DOI: 10.11868/j.issn.1005-5053.2019.000164.SONG H P, LIU C C. Experimental study on fatigue cracking in pre-corroded aluminum alloy 2024-T4 via digital image correlation [J]. Journal of Aeronautical Materials, 2020, 40(2): 43–52. DOI: 10.11868/j.issn.1005-5053.2019.000164. [11] PAN B, YU L P, YANG Y Q, et al. Full-field transient 3D deformation measurement of 3D braided composite panels during ballistic impact using single-camera high-speed stereo-digital image correlation [J]. Composite Structures, 2016, 157: 25–32. DOI: 10.1016/j.compstruct.2016.08.017. [12] 徐振洋, 杨军, 郭连军. 爆炸聚能作用下混凝土试件劈裂的高速3D DIC实验 [J]. 爆炸与冲击, 2016, 36(3): 400–406. DOI: 10.11883/1001-1455(2016)03-0400-07.XU Z Y, YANG J, GUO L J. Study of the splitting crack propagation morphology using high-speed 3D DIC [J]. Explosion and Shock Waves, 2016, 36(3): 400–406. DOI: 10.11883/1001-1455(2016)03-0400-07. [13] ROLFE E, KABOGLU C, QUINN R, et al. High velocity impact and blast loading of composite sandwich panels with novel carbon and glass construction [J]. Journal of Dynamic Behavior of Materials, 2018, 4(3): 359–372. DOI: 10.1007/s40870-018-0163-5. [14] XING H Z, ZHAO J, WU G, et al. Perforation model of thin rock slab subjected to rigid projectile impact at an intermediate velocity [J]. International Journal of Impact Engineering, 2020, 139: 103536. DOI: 10.1016/j.ijimpeng.2020.103536. [15] 魏宏健, 姜雄文, 赵庚, 等. 爆炸冲击波载荷下预制孔铝板的动态响应 [J]. 兵工学报, 2021, 42(S1): 96–104. DOI: 10.3969/j.issn.1000-1093.2021.S1.013.WEI H J, JIANG X W, ZHAO G, et al. Dynamic response of aluminum plates with pre-formed holes under airblast loading [J]. Acta Armamentarii, 2021, 42(S1): 96–104. DOI: 10.3969/j.issn.1000-1093.2021.S1.013. [16] LIU X, YANG J, XU Z Y, et al. Experimental investigations on crack propagation characteristics of granite rectangle plate with a crack (GRPC) under different blast loading rates [J]. Shock and Vibration, 2020, 2020: 8885582. DOI: 10.1155/2020/8885582. [17] 范亚夫, 魏延鹏, 薛跃军, 等. 数字图像相关测试技术在霍普金森杆加载实验中的应用 [J]. 实验力学, 2015, 30(5): 590–598. DOI: 10.7520/1001-4888-14-273.FAN Y F, WEI Y P, XUE Y J, et al. On the application of digital image correlation testing technology in Hopkinson bar loading [J]. Journal of Experimental Mechanics, 2015, 30(5): 590–598. DOI: 10.7520/1001-4888-14-273. [18] 邢灏喆, 王明洋, 范鹏贤, 等. 基于高速3D-DIC技术的砂岩动力特性粒径效应研究 [J]. 爆炸与冲击, 2021, 41(11): 113101. DOI: 10.11883/bzycj-2021-0088.XING H Z, WANG M Y, FAN P X, et al. Grain-size effect on dynamic behavior of sandstone based on high-speed 3D-DIC technique [J]. Explosion and Shock Waves, 2021, 41(11): 113101. DOI: 10.11883/bzycj-2021-0088. [19] ATAPEK S H, KARAGOZ S. Ballistic impact behaviour of a tempered bainitic steel against 7.62 mm armour piercing projectile [J]. Defence Science Journal, 2011, 61(1): 81–87. DOI: 10.14429/dsj.61.411. [20] BURIAN W, ŻOCHOWSKI P, GMITRZUK M, et al. Protection effectiveness of perforated plates made of high strength steel [J]. International Journal of Impact Engineering, 2019, 126: 27–39. DOI: 10.1016/j.ijimpeng.2018.12.006. [21] 程月华, 吴昊, 谭可可, 等. 装甲钢/UHPC复合靶体抗侵彻性能试验与数值模拟研究 [J]. 爆炸与冲击, 2022, 42(5): 053302. DOI: 10.11883/bzycj-2021-0278.CHENG Y H, WU H, TAN K K, et al. Experimental and numerical studies on penetration resistance of armor steel/UHPC composite targets [J]. Explosion and Shock Waves, 2022, 42(5): 053302. DOI: 10.11883/bzycj-2021-0278. [22] Livermore Software Technology Corporation. LS-DYNA keyword user’s manual [Z]. Livermore: Livermore Software Technology Corporation, 2001. [23] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. Hague, 1983. [24] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9. [25] STEINBERG D J. Equation of state and strength properties of selected materials [M]. Livermore: Lawrence Livermore National Laboratory, 1996. [26] IQBAL D, TIWARI V. Investigations on the influence of projectile shape on the transient and post impact response of thin sheet structures [J]. Thin-Walled Structures, 2019, 145: 106402. DOI: 10.1016/j.tws.2019.106402. -