Influence of kerosene droplet diameters on the flow field of a two-phase rotating detonation engine
-
摘要: 为探究煤油液滴不同初始直径对气液两相旋转爆轰发动机流场的影响,假设初始注入的煤油液滴具有均匀直径,考虑雾化破碎、蒸发等过程,建立了非定常两相爆轰的Eulerian-Lagrangian模型,进行了液态煤油/高温空气爆轰的非预混二维数值模拟。结果表明:在初始液滴直径为1~70 μm的工况范围,燃烧室内均形成了单个稳定传播的旋转爆轰波;全局当量比为1时,爆轰波前的空气区域大于液滴煤油的蒸气区域,导致波前燃料空气混合不均匀,波前均存在富油区和贫油区,两相速度差导致分离出的空气形成低温条带;当煤油液滴的初始直径较小时,波前的反应物混合过程主要受蒸发的影响,爆轰波可稳定传播;当直径减小至1 μm时,煤油液滴在入口处即蒸发,旋转爆轰波表现为气相传播的特性,爆轰波结构平整;当煤油液滴的初始直径较大时,波前的反应物混合过程主要受液滴破碎的影响;对于相同的燃料质量流量,在不同初始煤油液滴直径工况下,煤油液滴最大的停留时间均占爆轰波传播时间尺度的80%以上;爆轰波前燃料预蒸发为气相的占比越高,爆轰波的传播速度越高;初始液滴直径为10~70 μm的工况范围内,爆轰波的速度随初始直径的增大先升高后降低。Abstract: To investigate the influence of the initial droplet diameter on the flow field of gas-liquid two-phase rotating detonation engine, an Eulerian-Lagrangian model of unsteady two-phase detonation is established based on the assumption of an initially uniform droplet diameter and considering atomization and evaporation processes. Non-premixed two-dimensional numerical simulations of detonation for liquid kerosene and high temperature air mixture are conducted. The results show that a single stable rotating detonation wave is formed in the initial droplet diameter range of 1–70 μm. For the global equivalent ratio of 1, the air area before the detonation wave front is larger than the vapor area of kerosene droplets, resulting in inhomogeneous mixing before the wave front. Both oil-rich and oil-poor areas form before the wave front. Due to the speed difference between two phases of the gas and droplets, the air is separated to form a low-temperature strip. When the initial diameter of kerosene droplets is small, the mixing process of reactants is mainly affected by evaporation and the detonation wave propagates stably. When the initial droplet diameter is reduced to 1 μm, evaporation occurs at the entrance, and the rotating detonation flow field shows the characteristics of gas phase propagation, and the structure of the detonation wave is smooth. When the initial diameter of kerosene droplets is relatively large, the mixing process of reactants before the wave front is mainly affected by droplet break-up. For the same fuel mass flow rate with different initial droplet diameters, the maximum residence time of kerosene droplets accounts for more than 80% of the detonation wave propagation time and the detonation velocity increases with the increased ratio of gaseous part of the fuel. The velocity of the detonation wave increases first and then decreases with the increased initial droplet diameter in the range of 10–70 μm.
-
Key words:
- rotating detonation engine /
- gas-liquid two-phase flow /
- combustion /
- droplet diameters
-
A b α E/(kJ·mol−1) β R/(J·mol−1·K−1) 2.587×109 0 0.25 125.6 0.15 8.314 表 2 煤油液滴注入参数
Table 2. Injection parameters of kerosene droplets
工况 全局当量比 煤油质量流量/(kg·s−1) 初始液滴直径/μm 液滴注入速度/(m·s−1) 液滴温度/K 1 1 2.056 2 1 50 300 2 1 2.056 2 10 50 300 3 1 2.056 2 20 50 300 4 1 2.056 2 30 50 300 5 1 2.056 2 40 50 300 6 1 2.056 2 50 50 300 7 1 2.056 2 70 50 300 表 3 不同网格尺寸计算所得的爆轰波平均速度、温度和反应区宽度
Table 3. Average velocity, temperature and reaction zone of detonation waves calculated for different cell sizes
网格单元尺寸/mm 爆轰波平均速度/(m∙s−1) 温度/K 反应区宽度/mm 0.20 1 170 2 509 0.70 0.25 1 160 2 500 0.75 0.40 1 200 2 543 0.85 0.50 1 240 2 482 1.00 表 4 不同初始直径的液滴最大停留时间和爆轰波周期
Table 4. Maximum residence time of droplets and detonation cycle time for different droplet diameters
初始液滴
直径/μm最大停留
时间/μs爆轰波
周期/μs最大停留时间与爆轰波
周期的比值/%10 80.0 96.5 82.9 20 79.0 91.7 86.2 30 85.0 94.8 89.7 40 86.0 94.8 90.7 50 86.9 96.5 90.1 70 84.5 96.5 87.6 -
[1] TEASLEY T, WILLIAMS B, LARKEY A, et al. A review towards the design optimization of high-performance additively manufactured rotating detonation rocket engine injectors [C] // AIAA Propulsion and Energy Forum. Virtual Event: AIAA, 2021. DOI: 10.2514/6.2021-3655. [2] 王顺利, 吴云, 金迪, 等. 不同当量比下喷管对旋转爆震特性的影响研究 [J]. 爆炸与冲击, 2020, 40(10): 102102. DOI: 10.11883/bzycj-2019-0481.WANG S L, WU Y, JIN D, et al. Effects of nozzles on performance of rotating detonation at different equivalence ratios [J]. Explosion and Shock Waves, 2020, 40(10): 102102. DOI: 10.11883/bzycj-2019-0481. [3] RAJ P, MEADOWS J. A method for modeling dynamic injector response in a rotating detonation combustor (RDC) [C] // AIAA Propulsion and Energy Forum. Virtual Event: AIAA, 2021. DOI: 10.2514/6.2021-3647. [4] 葛高杨, 马元, 侯世卓, 等. 当量比对汽油燃料两相旋转爆轰发动机工作特性影响实验研究 [J]. 爆炸与冲击, 2021, 41(11): 112102. DOI: 10.11883/bzycj-2020-0465.GE G Y, MA Y, HOU S Z, et al. Experimental study on the effect of equivalent ratio on working characteristics of gasoline fuel two-phase rotating detonation engine [J]. Explosion and Shock Waves, 2021, 41(11): 112102. DOI: 10.11883/bzycj-2020-0465. [5] 李宝星, 许桂阳, 翁春生, 等. 燃烧室宽度对液态燃料旋转爆轰发动机影响实验研究 [J]. 推进技术, 2021, 42(2): 372–381. DOI: 10.13675/j.cnki.tjjs.190472.LI B X, XU G Y, WENG C S, et al. Experimental investigation for effects of chamber width on rotating detonation engine with liquid fuel [J]. Journal of Propulsion Technology, 2021, 42(2): 372–381. DOI: 10.13675/j.cnki.tjjs.190472. [6] PAXSON D E, FOTIA M L, HOKE J, et al. Comparison of numerically simulated and experimentally measured performance of a rotating detonation engine [C] // 53rd AIAA Aerospace Sciences Meeting. Kissmmee, Florida, USA: AIAA, 2015. DOI: 10.2514/6.2015-1101. [7] ZHOU R, WU D, WANG J P. Progress of continuously rotating detonation engines [J]. Chinese Journal of Aeronautics, 2016, 29(1): 15–29. DOI: 10.1016/j.cja.2015.12.006. [8] STECHMANN D, LIM D, HEISTER S D. Survey of rotating detonation wave combustor technology and potential rocket vehicle applications [C] // 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH, USA: AIAA, 2014. DOI: 10.2514/6.2014-3902. [9] WANG Y H, QIAO W Y, LE J L. Combustion characteristics in rotating detonation engines [J]. International Journal of Aerospace Engineering, 2021: 8839967. DOI: 10.1155/2021/8839967. [10] SUCHOCKI J A, YU S J, HOKE J L, et al. Rotating detonation engine operation [C] // 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee, USA: AIAA, 2012. DOI: 10.2514/6.2012-119. [11] FOTIA M L, KAEMMING T A, HOKE J, et al. Study of the experimental performance of a rotating detonation engine with nozzled exhaust flow [C] // 53rd AIAA Aerospace Sciences Meeting. Kissimmee, Florida, USA: AIAA, 2015. DOI: 10.2514/6.2015-0631. [12] ISHIHARA K, KATO Y, MATSUOKA K, et al. Performance evaluation of a rotating detonation engine with conical-shape tail [C] // 53rd AIAA Aerospace Sciences Meeting. Kissimmee, Florida, USA: AIAA, 2015. DOI: 10.2514/6.2015-0630. [13] FOTIA M, SCHAUER F, HOKE J. Experimental study of performance scaling in rotating detonation engines operated on hydrogen and gaseous hydrocarbon fuel [C] // 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Glasgow, Scotland: AIAA, 2015. DOI: 10.2514/6.2015-3626. [14] WANG Y H, LE J L. Rotating detonation engines with two fuel orifice schemes [J]. Acta Astronautica, 2019, 161: 262–275. DOI: 10.1016/j.actaastro.2019.05.035. [15] NAKAGAMI S, MATSUOKA K, KASAHARA J, et al. Visualization of rotating detonation waves in a plane combustor with a cylindrical wall injector [C] // 53rd AIAA Aerospace Sciences Meeting. Kissimmee, Florida, USA: AIAA, 2015. DOI: 10.2514/6.2015-0878. [16] RANKIN B A, RICHARDSON D R, CASWELL A W, et al. Imaging of OH* chemiluminescence in an optically accessible nonpremixed rotating detonation engine [C] // 53rd AIAA Aerospace Sciences Meeting. Kissimmee, Florida, USA: AIAA, 2015. DOI: 10.2514/6.2015-1604. [17] MEYER S J, POLANKA M D, SCHAUER F R, et al. Parameter impact on heat flux in a rotating detonation engine [C] // 53rd AIAA Aerospace Sciences Meeting. Kissimmee, Florida, USA: AIAA, 2018. DOI: 10.2514/6.2018-0400. [18] THEUERKAUF S W, SCHAUER F R, ANTHONY R, et al. Experimental characterization of high-frequency heat flux in a rotating detonation engine [C] // 53rd AIAA Aerospace Sciences Meeting. Kissimmee, Florida, USA: AIAA, 2015. DOI: 10.2514/6.2015-1603. [19] 李宝星, 许桂阳, 舒慧明, 等. 燃烧室轴向和周向长度对气液两相旋转爆轰特性的影响 [J]. 航空动力学报, 2020, 35(8): 1601–1611. DOI: 10.13224/j.cnki.jasp.2020.08.005.LI B X, XU G Y, SHU H M, et al. Influence of axial and circumferential lengths of combustion chamber on gas-liquid two-phase rotating detonation characteristics [J]. Journal of Aerospace Power, 2020, 35(8): 1601–1611. DOI: 10.13224/j.cnki.jasp.2020.08.005. [20] 徐灿, 邓利, 马虎, 等. 环缝宽度对旋转爆震发动机工作特性的影响 [J]. 爆炸与冲击, 2019, 39(3): 032102. DOI: 10.11883/bzycj-2017-0248.XU C, DENG L, MA H, et al. Annular gaps width effecting on performance of rotating detonation engine [J]. Explosion and Shock Waves, 2019, 39(3): 032102. DOI: 10.11883/bzycj-2017-0248. [21] ZHANG L F, ZHANG S J, WANG J P. A direct simulation of continuous detonation engine with the Navier-Stokes equations [C] //21st AIAA International Space Planes and Hypersonics Technologies Conference. Xiamen, Fujian, China: AIAA, 2017. DOI: 10.2514/6.2017-2323. [22] SHAO Y T, LIU M, WANG J P. Continuous detonation engine and effects of different types of nozzle on its propulsion performance [J]. Chinese Journal Aeronautics, 2010, 23(6): 647–652. DOI: 10.1016/S1000-9361(09)60266-1. [23] SUN J, ZHOU J, LIU S J, et al. Numerical investigation of a non-premixed hollow rotating detonation engine [J]. International Journal of Hydrogen Energy, 2019, 44(31): 17084–17094. DOI: 10.1016/j.ijhydene.2019.04.168. [24] HAYASHI K A, SHIMOMURA K, TSUBOI N, et al. 3D numerical study on flow field in disc-RDE [C] // AIAA Propulsion and Energy Forum. Virtual Event: AIAA, 2021. DOI: 10.25Virtual Event14/6.2021-3665. [25] 徐雪阳, 卓长飞, 武晓松, 等. 非预混喷注对旋转爆震发动机影响的数值研究 [J]. 航空学报, 2016, 37(4): 1184–1195. DOI: 10.7527/s1000-6893.2015.0195.XU X Y, ZHUO C F, WU X S, et al. Numerical simulation of injection schemes with separate supply of fuel and oxidizer effects on rotating detonation engine [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1184–1195. DOI: 10.7527/s1000-6893.2015.0195. [26] 周蕊, 李晓鹏. 连续旋转爆轰发动机冷流场的混合特性研究 [J]. 航空学报, 2016, 37(12): 3668–3674. DOI: 10.7527/s1000-6893.2016.0108.ZHOU R, LI X P. Numerical investigation of mixing characteristic of cold continuously rotating detonation engine [J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12): 3668–3674. DOI: 10.7527/s1000-6893.2016.0108. [27] SARACOGLU, BAYINDIR H, et al. Unsteady performance of rotating detonation engines with different exhaust nozzles [J]. Journal of Propulsion and Power, 2017, 33(1): 1–10. DOI: 10.2514/1.B36164. [28] KAILASANATH K. Liquid-fueled detonations in tubes [J]. Journal of Propulsion and Power, 2006, 22(6): 1261–1268. DOI: 10.2514/1.19624. [29] SCHWER D A. Multi-dimensional simulations of liquid-fueled JP-10/oxygen detonations [C] // AIAA Propulsion and Energy Forum. Indianapolis, USA: AIAA, 2019. DOI: 10.2514/6.2019-4042. [30] BYKOVSKII F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation of a heterogeneous kerosene-air mixture with addition of hydrogen [J]. Combustion, Explosion, and Shock Waves, 2016, 52(3): 371–373. DOI: 10.1134/S0010508216030187. [31] ZHENG Q, MENG H L, WENG C S, et al. Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave [J]. Defence Technology, 2020, 16(6): 1106–1115. DOI: 10.1016/j.dt.2020.06.028. [32] LI J M, CHANG P H, LI L, et al. Investigation of injection strategy for liquid-fuel rotating detonation engine [C] // AIAA Aerospace Sciences Meeting. Kissimmee, Florida, USA: AIAA, 2018. DOI: 10.2514/6.2018-0403. [33] MENG Q Y, ZHAO M J, ZHENG H T, et al. Eulerian-Lagrangian modelling of rotating detonative combustion in partially pre-vaporized n-heptane sprays with hydrogen addition [J]. Fuel, 2021, 290: 119808. DOI: 10.1016/j.fuel.2020.119808. [34] 徐高, 翁春生, 康楠, 等. 考虑燃料雾化的气液两相连续旋转爆轰数值模拟 [J]. 推进技术, 2022, 43(1): 200249. DOI: 10.13675/j.cnki.tjjs.200249.XU G, WENG C S, KANG N, et al. Numerical simulation of gas-liquid two-phase continuous rotating detonation considering fuel atomization [J]. Journal of Propulsion Technology, 2022, 43(1): 200249. DOI: 10.13675/j.cnki.tjjs.200249. [35] FOX G E, DABORA E K. Breakup of liquid drops due to convective flow in shocked sprays [J]. Symposium (International) on Combustion, 1973, 14(1): 1365–1373. DOI: 10.1016/S0082-0784(73)80122-5. [36] KHOSLA S, CROCKER D S. CFD modeling of the atomization of plain liquid jets in cross flow for gas turbine applications [C] // Proceedings of ASME Turbo Expo 2004: Power for Land, Sea, and Air. Vienna, Austria: American Society of Mechanical Engineers, 2004. DOI: 10.1115/GT2004-54269. [37] KHARE P, WANG S, YANG V. Modeling of finite-size droplets and particles in multiphase flows [J]. Chinese Journal of Aeronautics, 2015, 28(4): 974–982. DOI: 10.1016/j.cja.2015.05.004. [38] BROUMAND M, FAROKHI M, BIROUK M. Penetration height of a circular liquid jet in a subsonic gaseous crossflow: an eulerian-lagrangian approach [C] // 54th AIAA Aerospace Sciences Meeting. San Diego, California, USA: AIAA, 2016. DOI: 10.2514/6.2016-1591. [39] BHANDARKAR A, MANNA P, CHAKRABORTY D. Assessment of droplet breakup models in high-speed cross-flow [J]. Atomization and Sprays, 2017, 27(1): 61–79. DOI: 10.1615/atomizspr.2016015409. [40] HU R, LI Q, LI C, LI C. Effects of an accompanied gas jet on transverse liquid injection in a supersonic crossflow [J]. Acta Astronautica, 2019, 159: 440–451. DOI: 10.1016/j.actaastro.2019.01.040. [41] BURCAT A, EIDELMAN A. Evolution of a detonation wave in a cloud of fuel droplets: part Ⅱ. influence of fuel droplets [J]. AIAA Journal, 1980, 18(10): 80–4099. DOI: 10.2514/3.7717. [42] 吴望一. 流体力学 [M]. 北京: 北京大学出版社, 2001. [43] LIU A B, MATHER D, REITZ R D. Modeling the effects of drop drag and breakup on fuel sprays: 930072 [R]. SAE Transactions, Detroit, USA, 1993. [44] O’ROURKE P J, AMSDEN A A. The TAB method for numerical calculation of spray droplet breakup [R]. Los Alamos, NM, USA: Los Alamos National Laboratory, 1987. [45] STEPHEN R T, DANIEL C H. An introduction to combustion: concepts and applications [M]. New York, USA: McGraw Hill, 2000. [46] GUO K K, NIE W S, CAI H H. Numerical simulation of damping capacity between injector-formed baffle and normal blade baffle in a kero/lox liquid rocket engine [C] // Proceedings of the Advances in Materials, Machinery, Electical Engineering (AMMEE 2017). Prais, France: Atlantis Press, 2017: 576–585. DOI: 10.2991/ammee-17.2017.110. [47] KUO K K Y. Principles of combustion [M]. New York, USA: John Wiley and Sons, 1986.