Experimental study on explosion characteristics of penetrator with elliptical cross-section
-
摘要: 为研究椭圆截面侵彻弹体的爆炸特性,设计并开展了静爆威力外场试验。将质量为255 kg的弹体竖立于木质托弹架上,质心距地面高度为2 m,采用试验引信起爆弹体装药。通过航拍无人机实时拍摄整个爆炸过程,在长轴和短轴方向布置扇形效应钢板以获取破片数量及穿甲率,采用超压传感器测量距弹轴7、10和12 m处的冲击波超压,并对弹体爆炸后的宏观景象以及火球、破片和冲击波超压特性进行了详细分析。结果表明,火球演化形貌与破片散布区域关于弹体长轴和短轴呈对称分布;火球演化过程分为快速成长阶段、高温稳定阶段以及自由扩散阶段,火球尺寸在爆炸后41.7 ms达到最大,短轴和长轴方向的最大尺寸分别为21.86、19.29 m,且火球在长轴方向发生了明显的二次膨胀;短轴方向的破片尺寸小、数量多、穿甲能力强,而长轴方向的破片特性恰好相反;冲击波超压峰值、冲量及速度均随传播距离增大而不断减小。综合试验结果对比分析,认为椭圆截面侵彻弹体的非轴对称结构和非均匀壁厚对爆炸特性影响较大,是造成火球形貌及破片非轴对称分布的根本原因。Abstract: To study the explosion characteristics of penetrator with elliptical cross-section, a static explosion experiment was designed and carried out. The penetrator with a mass of 255 kg was erected on a wooden cartridge, the centroid height was 2 m from the ground, and the test fuse was used to detonate the penetrator explosive. The aerial drone was used to record the whole explosion process in real time, the sector effecting steel plates were arranged in the major and minor axis directions to obtain the number and perforation rate of fragments, and the shock wave overpressure at the distance of 7, 10 and 12 m from the penetrator axis was measured. The macroscopic scene and the characteristics of fireball, fragment, and shock wave overpressure after explosion are analyzed in detail. Results show that the evolution morphology of the fireball and the fragment distribution area are symmetrically distributed with respect to the major axis and minor axis. The evolution of fireball can be divided into rapid growth stage, high temperature stability stage and free diffusion stage. The fireball size reached its maximum at 41.7 ms after explosion, and the maximum size in the minor axis and major axis directions was 21.86 and 19.29 m, respectively. Besides, the fireball size in the major axis direction had obvious secondary expansion. The fragments in the minor axis were small in size, large in number, and strong in perforation, while the fragments in the major axis had the opposite characteristics. The overpressure peak value, impulse, and velocity of shock wave decrease with the increase of propagation distance. Based on the experimental results, it can be concluded that the non-axisymmetric structure and non-uniform wall thickness of the elliptically cross-sectional penetrator have a great influence on the explosion characteristics, leading to the morphology of the non-axisymmetric distribution of the fireball and fragments.
-
表 1 随炉热处理试件的力学性能检测结果
Table 1. Mechanical properties of heat treated specimens
试样 屈服强度/MPa 抗拉强度/MPa 延伸率/% 断面收缩率/% 冲击功/J 断裂韧性/(MPa·m1/2) 1 1249 1646 13.0 51 70.6 101 2 1247 1637 12.5 50 74.2 102 3 1248 1642 13.5 49 80.4 106 4 1262 1648 12.5 51 88.5 表 2 火球演化过程典型特征参数
Table 2. Typical characteristic parameters of fireball evolution
稳定火球持续
时间/ms火球持续
总时间/ms火球最大尺寸/m 火球与破片
分离时刻/ms短轴方向 长轴方向 50.0 1512.0 21.86 19.29 16.7 表 3 火球预估经验公式及其适用条件
Table 3. Empirical formulas of fireball prediction and applicable conditions
经验公式 A B C D 适用条件 TNO/CCPS[12] 6.48 0.325 0.825 0.26 Moorhouse & Pritchard[12] 5.330 0.327 1.089 0.327 沸腾液体 ILO[12] 5.8 1/3 0.45 1/3 沸腾液体 Lihou & Maund[12] 3.51 0.333 0.32 0.330 Williamson & Mann[12] 5.88 0.333 1.09 0.617 Fay & Lewis[12] 6.28 0.330 2.530 0.17 GREENBERG & CRAMER[12] 5.33 0.327 1.089 0.327 High[12] 3.86 0.32 0.299 0.32 液体推进剂、燃料 Hasegawa & Sato[12] 5.25 0.314 1.070 0.181 液体推进剂、燃料 RAKACZY[12] 3.76 0.325 0.258 0.349 弹药 Roberts[12] 5.80 1/3 0.830 0.316 丙烷 表 4 破片特征参数
Table 4. Characteristic parameters of fragments
方向 钢板
编号钢板面积/
m2着靶
总数有效穿孔
总数破片密度/
m−2破片穿甲率/
%长轴 1# 3 15 8 3.4 62.0 2# 3 10 8 3# 3 25 15 短轴 4# 3 33 30 9.0 81.8 5# 3 34 27 6# 3 32 24 表 5 反射冲击波超压典型特征参数
Table 5. Typical characteristic parameters of reflection shock wave overpressure
测点位置/m 测点编号 超压峰值/kPa 超压峰值均值/kPa 正压时间/ms 正压时间均值/ms 冲量/(kPa·ms) 冲量均值/kPa·ms 7 1# 312 313.5 2.45 2.28 305 300.5 2# 315 2.11 296 10 1# 161 180.0 4.90 5.05 181 190.5 2# 199 5.20 200 12 1# 109 112.0 7.20 6.70 190 195.0 2# 115 6.20 200 -
[1] DAI X H, WANG K H, LI M R, et al. Rigid elliptical cross-section ogive-nose projectiles penetration into concrete targets [J]. Defence Technology, 2021, 17(3): 800–811. DOI: 10.1016/j.dt.2020.05.011. [2] DAI X H, WANG K H, DUAN J, et al. A rigid elliptical cross-sectional projectile with different geometrical characteristics penetration into concrete target [J]. Journal of Physics: Conference Series, 2020, 1507: 032001. DOI: 10.1088/1742-6596/1507/3/032001. [3] 谭远深, 黄风雷, 皮爱国. 椭圆截面侵彻弹体结构优化设计与结构响应 [J]. 爆炸与冲击, 2022, 42(6): 063301. DOI: 10.11883/bzycj-2021-0436.TAN Y S, HUANG F L, PI A G. Structural optimization design and structural response of elliptical-section penetration projectiles [J]. Explosion and Shock Waves, 2022, 42(6): 063301. DOI: 10.11883/bzycj-2021-0436. [4] 王文杰, 张先锋, 邓佳杰, 等. 椭圆截面弹体侵彻砂浆靶规律分析 [J]. 爆炸与冲击, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020.WANG W J, ZHANG X F, DENG J J, et al. Analysis of projectile penetrating into mortar target with elliptical cross-section [J]. Explosion and Shock Waves, 2018, 38(1): 164–173. DOI: 10.11883/bzycj-2017-0020. [5] 刘子豪, 武海军, 高旭东, 等. 椭圆截面弹体侵彻混凝土阻力特性研究 [J]. 北京理工大学学报, 2019, 39(2): 135–141,146. DOI: 10.15918/j.tbit1001-0645.2019.02.005.LIU Z H, WU H J, GAO X D, et al. Study on the resistance characteristics of elliptical cross-section projectile penetrating concrete [J]. Transactions of Beijing Institute of Technology, 2019, 39(2): 135–141,146. DOI: 10.15918/j.tbit1001-0645.2019.02.005. [6] DONG H, LIU Z H, WU H J, et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete [J]. International Journal of Impact Engineering, 2019, 132: 103311. DOI: 10.1016/j.ijimpeng.2019.05.025. [7] 郭磊, 何勇, 潘绪超, 等. 非圆截面弹体侵彻混凝土靶试验与仿真研究 [J]. 兵器材料科学与工程, 2019, 42(3): 62–68. DOI: 10.14024/j.cnki.1004-244x.20190123.002.GUO L, HE Y, PAN X C, et al. Experimental and numerical investigation on the penetration mechanics of non-circular projectile into concrete [J]. Ordnance Material Science and Engineering, 2019, 42(3): 62–68. DOI: 10.14024/j.cnki.1004-244x.20190123.002. [8] 王浩, 武海军, 闫雷, 等. 椭圆横截面弹体斜贯穿双层间隔薄钢板失效模式 [J]. 兵工学报, 2021, 41(S2): 1–11. DOI: 10.3969/j.issn.1000-1093.2020.S2.001.WANG H, WU H J, YAN L, et al. Research on oblique perforation of truncated ogive-nosed projectiles with elliptic cross-section into double-layered thin steel plate with gap space [J]. Acta Armamentarii, 2021, 41(S2): 1–11. DOI: 10.3969/j.issn.1000-1093.2020.S2.001. [9] 王浩, 潘鑫, 武海军, 等. 椭圆截面截卵形刚性弹体正贯穿加筋板能量耗散分析 [J]. 爆炸与冲击, 2019, 39(10): 103203. DOI: 10.11883/bzycj-2018-0350.WANG H, PAN X, WU H J, et al. Energy dissipation analysis of elliptical truncated oval rigid projectile penetrating stiffened plate [J]. Explosion and Shock Waves, 2019, 39(10): 103203. DOI: 10.11883/bzycj-2018-0350. [10] 骆奎. 非旋转对称的椭圆截面弹体对混凝土侵彻问题的研究 [D]. 湘潭: 湘潭大学, 2020. DOI: 10.27426/d.cnki.gxtdu.2020.000298.LUO K. Research on penetration of concrete with non-rotationally symmetrical elliptical cross section [D]. Xiangtan: Xiangtan University, 2020. DOI: 10.27426/d.cnki.gxtdu.2020.000298. [11] 魏海洋, 张先锋, 熊玮, 等. 椭圆截面弹体斜侵彻金属靶体弹道研究 [J]. 爆炸与冲击, 2022, 42(2): 023304. DOI: 10.11883/bzycj-2021-0291.WEI H Y, ZHANG X F, XIONG W, et al. Oblique penetration of elliptical cross-section projectile into metal target [J]. Explosion and Shock Waves, 2022, 42(2): 023304. DOI: 10.11883/bzycj-2021-0291. [12] 何志光. FAE爆炸火球热辐射效应研究 [D]. 南京: 南京理工大学, 2004. DOI: 10.7666/d.y624958.HE Z G. Research on thermal radiation effect of FAE explosion fireball [D]. Nanjing: Nanjing University of Science and Technology, 2004. DOI: 10.7666/d.y624958. [13] 李天刚, 玄承杰, 陈珅培. 壳体刻槽对温压炸药爆炸火球影响的试验研究 [J]. 弹箭与制导学报, 2012, 32(1): 91–94, 98. DOI: 10.3969/j.issn.1673-9728.2012.01.027.LI T G, XUAN C J, CHEN K P. The experimental study on effect of grooving shell on fireball caused by explosion of thermal-baric explosive [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(1): 91–94, 98. DOI: 10.3969/j.issn.1673-9728.2012.01.027. [14] 裴明敬, 毛根旺, 张颖, 等. 温压炸药爆炸火球和冲击波传播过程的高速摄影测量 [C]//第四届全国爆炸力学实验技术学术会议论文集. 武夷山: 中国力学学会, 2006. [15] WANG L Y, DU H M, XU H. Compensation method for infrared temperature measurement of explosive fireball [J]. Thermochimica Acta, 2019, 680: 178342. DOI: 10.1016/j.tca.2019.178342. [16] BLANKENHAGEL P, WEHRSTEDT K D, XU S, et al. A new model for organic peroxide fireballs [J]. Journal of Loss Prevention in the Process Industries, 2017, 50: 237–242. DOI: 10.1016/j.jlp.2017.10.002. [17] BLANKENHAGEL P, WEHRSTEDT K D, MISHRA K B, et al. Thermal radiation assessment of fireballs using infrared camera [J]. Journal of Loss Prevention in the Process Industries, 2018, 54: 246–253. DOI: 10.1016/j.jlp.2018.04.008. [18] 郭学永, 李斌, 王连炬, 等. 温压药剂的爆炸温度场测量及热辐射效应研究 [J]. 弹箭与制导学报, 2008, 28(5): 119–121,124. DOI: 10.3969/j.issn.1673-9728.2008.05.036.GUO X Y, LI B, WANG L J, et al. Measurement of blast temperature field and study of thermal radiation effect for thermo-baric explosive [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(5): 119–121,124. DOI: 10.3969/j.issn.1673-9728.2008.05.036. [19] 张玉磊, 翟红波, 李芝绒, 等. TNT和温压炸药的爆炸火球表面温度对比试验研究 [J]. 爆破器材, 2015, 44(5): 23–26. DOI: 10.3969/j.issn.1001-8352.2015.05.006.ZHANG Y L, ZHAI H B, LI Z R, et al. Experimental research on the contrast of the fireball's surface temperature of TNT and thermobaric explosive [J]. Explosive Materials, 2015, 44(5): 23–26. DOI: 10.3969/j.issn.1001-8352.2015.05.006. [20] 阚金玲, 刘家骢, 曾秀琳, 等. 温压炸药爆炸火球的特征 [J]. 火炸药学报, 2007, 30(2): 55–58. DOI: 10.3969/j.issn.1007-7812.2007.02.015.KAN J L, LIU J C, ZENG X L, et al. Fireball characteristics of a thermal-baric explosive [J]. Chinese Journal of Explosives and Propellants, 2007, 30(2): 55–58. DOI: 10.3969/j.issn.1007-7812.2007.02.015. [21] 周莉. 温压炸药的爆炸参数测试与威力评估 [D]. 南京: 南京理工大学, 2013. DOI: 10.7666/d.Y2276278.ZHOU L. Explosion parameter measure and power evaluation of thermobaric explosive [D]. Nanjing: Nanjing University of Science & Technology, 2013. DOI: 10.7666/d.Y2276278. [22] ZHU J J, ZHENG Y, LI W B, et al. Axial distribution of fragments from the dynamic explosion fragmentation of metal shells [J]. International Journal of Impact Engineering, 2019, 123: 140–146. DOI: 10.1016/j.ijimpeng.2018.09.020. [23] ZHU J J, ZHENG Y, YANG Y C, et al. Research on the volume and line fractal dimension of fragments from the dynamic explosion fragmentation of metal shells [J]. Powder Technology, 2018, 331: 129–136. DOI: 10.1016/j.powtec.2018.01.084. [24] 安振涛, 王超, 甄建伟, 等. 常规弹药爆炸破片和冲击波作用规律理论研究 [J]. 爆破, 2012, 29(1): 15–18. DOI: 10.3963/j.issn.1001-487X.2012.01.004.AN Z T, WANG C, ZHEN J W, et al. Theoretical research on action law of fragment and shock wave of traditional ammunition explosion [J]. Blasting, 2012, 29(1): 15–18. DOI: 10.3963/j.issn.1001-487X.2012.01.004. [25] 尹峰, 张亚栋, 方秦. 常规武器爆炸产生的破片及其破坏效应 [J]. 解放军理工大学学报(自然科学版), 2005, 6(1): 50–53. DOI: 10.3969/j.issn.1009-3443.2005.01.012.YIN F, ZHANG Y D, FANG Q. Fragment and its destroy effect produced by conventional weapon [J]. Journal of PLA University of Science and Technology, 2005, 6(1): 50–53. DOI: 10.3969/j.issn.1009-3443.2005.01.012. [26] 马永忠, 李其祥, 安纯前, 等. 弹丸破片空间分布规律研究 [J]. 弹箭与制导学报, 2004, 24(S1): 150–152. DOI: 10.15892/j.cnki.djzdxb.2004.s1.016.MA Y Z, LI Q X, AN C Q, et al. Research on space distribution regularity of pellet fragment [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2004, 24(S1): 150–152. DOI: 10.15892/j.cnki.djzdxb.2004.s1.016. [27] 李伟, 朱锡, 梅志远, 等. 战斗部破片毁伤能力的等级划分试验研究 [J]. 振动与冲击, 2008, 27(3): 47–49, 59. DOI: 10.3969/j.issn.1000-3835.2008.03.012.LI W, ZHU X, MEI Z Y, et al. Experimental studies on differentiation in levels of damage capacity of fragments [J]. Journal of Vibration and Shock, 2008, 27(3): 47–49, 59. DOI: 10.3969/j.issn.1000-3835.2008.03.012. [28] FELIX D, COLWILL I, HARRIS P. A fast and accurate model for the creation of explosion fragments with improved fragment shape and dimensions [J]. Defence Technology, 2022, 18(2): 159–169. DOI: 10.1016/j.dt.2020.12.004. [29] 胡年明, 侯海量, 朱锡, 等. 带壳圆柱体战斗部爆炸后破片特性数值仿真研究 [J]. 舰船科学技术, 2018, 40(7): 6–10. DOI: 10.3404/j.issn.1672-7649.2018.07.002.HU N M, HOU H L, ZHU X, et al. Numerical simulation research on characteristic of fragments generated by cylinder warhead explosive [J]. Ship Science and Technology, 2018, 40(7): 6–10. DOI: 10.3404/j.issn.1672-7649.2018.07.002. [30] 宋贵宝, 蔡滕飞, 李红亮. 反舰导弹战斗部爆炸破片初速和空间分布 [J]. 舰船科学技术, 2014, 36(7): 137–141. DOI: 10.3404/j.issn.1672-7649.2014.07.029.SONG G B, CAI T F, LI H L. Research on fragment initial velocity and spatial distribution of anti-ship warhead explosion [J]. Ship Science and Technology, 2014, 36(7): 137–141. DOI: 10.3404/j.issn.1672-7649.2014.07.029. [31] 张鹏, 任杰, 王绪财, 等. 高强度钢壳体战斗部爆炸破碎无网格法数值仿真 [J]. 兵器材料科学与工程, 2016, 39(4): 47–52. DOI: 10.14024/j.cnki.1004-244x.20160616.003.ZHANG P, REN J, WANG X C, et al. Numerical simulation on fragmentation of high strength steel warhead shell driven by explosion based on grid-free method [J]. Ordnance Material Science and Engineering, 2016, 39(4): 47–52. DOI: 10.14024/j.cnki.1004-244x.20160616.003. [32] 孔祥韶, 吴卫国, 杜志鹏, 等. 圆柱形战斗部爆炸破片特性研究 [J]. 工程力学, 2014, 31(1): 243–249. DOI: 10.6052/j.issn.1000-4750.2012.09.0672.KONG X S, WU W G, DU Z P, et al. Research on fragments characteristic of cylindrical warhead [J]. Engineering Mechanics, 2014, 31(1): 243–249. DOI: 10.6052/j.issn.1000-4750.2012.09.0672. [33] 吴震, 徐红明, 杜志鹏, 等. 锥壳形战斗部爆炸破片的速度特性及形成模式研究 [J]. 船舶力学, 2020, 24(4): 518–524. DOI: 10.3969/j.issn.1007-7294.2020.04.012.WU Z, XU H M, DU Z P, et al. Research on fragment velocity characteristics and formation models of conical warhead [J]. Journal of Ship Mechanics, 2020, 24(4): 518–524. DOI: 10.3969/j.issn.1007-7294.2020.04.012. [34] 金朋刚, 姜夕博, 李鸿斌, 等. 非理想炸药爆炸冲击波压力空气中传播规律 [J]. 科学技术与工程, 2018, 18(22): 184–188. DOI: 10.3969/j.issn.1671-1815.2018.22.026.JIN P G, JIANG X B, LI H B, et al. The shock wave propagation law of explosion of nonideal explosive in the air [J]. Science Technology and Engineering, 2018, 18(22): 184–188. DOI: 10.3969/j.issn.1671-1815.2018.22.026. [35] 邢存震, 唐恩凌, 梁德刚, 等. 密闭空间内爆炸冲击波超压特性试验研究 [J]. 沈阳理工大学学报, 2017, 36(1): 33–37. DOI: 10.3969/j.issn.1003-1251.2017.01.009.XING C Z, TANG E L, LIANG D G, et al. Study on the characteristics of shockwave overpressure in enclosed space [J]. Journal of Shenyang Ligong University, 2017, 36(1): 33–37. DOI: 10.3969/j.issn.1003-1251.2017.01.009. [36] 赵传, 王树山, 马瑾, 等. 反舰导弹战斗部近距空爆的毁伤威胁性分析 [J]. 中国舰船研究, 2018, 13(3): 131–139. DOI: 10.19693/j.issn.1673-3185.01078.ZHAO C, WANG S S, MA J, et al. Analysis on damage of anti-ship missile warhead under close explosion [J]. Chinese Journal of Ship Research, 2018, 13(3): 131–139. DOI: 10.19693/j.issn.1673-3185.01078. [37] 蒋海燕, 李芝绒, 张玉磊, 等. 运动装药空中爆炸冲击波特性研究 [J]. 高压物理学报, 2017, 31(3): 286–294. DOI: 10.11858/gywlxb.2017.03.010.JIANG H Y, LI Z R, ZHANG Y L, et al. Characteristics of air blast wave field for explosive charge moving at different velocities [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 286–294. DOI: 10.11858/gywlxb.2017.03.010. [38] 王凤英, 刘天生. 毁伤理论与技术 [M]. 北京: 北京理工大学出版社, 2009: 266–269. -