构型弹体跌落冲击载荷及结构响应特性

张斌 李继承 陈建良 杨璞 何丽灵 陈刚

张斌, 李继承, 陈建良, 杨璞, 何丽灵, 陈刚. 构型弹体跌落冲击载荷及结构响应特性[J]. 爆炸与冲击, 2023, 43(3): 033201. doi: 10.11883/bzycj-2022-0098
引用本文: 张斌, 李继承, 陈建良, 杨璞, 何丽灵, 陈刚. 构型弹体跌落冲击载荷及结构响应特性[J]. 爆炸与冲击, 2023, 43(3): 033201. doi: 10.11883/bzycj-2022-0098
ZHANG Bin, LI Jicheng, CHEN Jianliang, YANG Pu, HE Liling, CHEN Gang. Loading characteristics and structural response of a warhead during drop impact[J]. Explosion And Shock Waves, 2023, 43(3): 033201. doi: 10.11883/bzycj-2022-0098
Citation: ZHANG Bin, LI Jicheng, CHEN Jianliang, YANG Pu, HE Liling, CHEN Gang. Loading characteristics and structural response of a warhead during drop impact[J]. Explosion And Shock Waves, 2023, 43(3): 033201. doi: 10.11883/bzycj-2022-0098

构型弹体跌落冲击载荷及结构响应特性

doi: 10.11883/bzycj-2022-0098
基金项目: 四川省自然科学基金杰出青年基金(2023NSFSC1913);中国工程物理研究院创新与发展基金(CX20210031)
详细信息
    作者简介:

    张 斌(1991- ),男,博士,助理研究员,zhb1005@mail.ustc.edu.cn

    通讯作者:

    李继承(1984- ),男,博士,副研究员,lijc401@caep.cn

  • 中图分类号: O385

Loading characteristics and structural response of a warhead during drop impact

  • 摘要: 为深入认识跌落冲击条件下构型弹体内部的载荷传递规律及结构响应特征,促进战斗部装药安定性评估和结构设计,结合数值模拟和应力波分析手段,研究了构型弹体在跌落过程中的冲击响应特征,主要关注内部药柱的变形和损伤特性,并讨论跌落姿态、装药构型和跌落高度等因素的影响。结果表明,在跌落冲击条件下,构型弹体装药的变形并非由药柱同壳体的直接撞击作用主控,而主要受到弹体内部应力波传播的影响。装药结构最大变形和损伤区域并不位于药柱外侧同壳体相接触的位置,而位于内部区域。冲击应力波在壳体和药柱之间的透射特征、在壳体和装药内部的反射和叠加特性等决定了药柱的主要变形区域及其变形程度。跌落姿态对药柱的响应特征和变形形貌具有重要影响,导致装药安定性风险从高到低排序的跌落姿态依次为尾部向下垂直跌落、水平跌落、头部向下垂直跌落和倾斜跌落。药柱构型也具有重要作用,其中药柱分段界面容易使得药柱变形程度增大,但对装药过载以及变形分布特征的影响相对较小;隔板结构则容易增大装药过载,同时导致药柱的局域变形位置和变形程度均发生改变。跌落高度对药柱变形区域分布特征的影响较小,对载荷幅值、变形程度和分布范围大小等则具有重要作用,随跌落高度增加,药柱的变形和过载逐渐增大。基于数值模拟结合应力波传播来阐释复杂构型弹体结构响应特征的研究手段,较好地搭建了基本理论与实际工程应用之间的分析桥梁。
  • 图  1  构型弹体及其装药结构有限元模型剖面

    Figure  1.  Longitudinal profiles in the finite element models of warheads containing explosive subassemblies

    图  2  在姿态1跌落条件下W1构型弹体壳体等效应力演变历程

    Figure  2.  Evolution of the effective stress in the shell during the configuration W1 warhead drop impact process with posture 1

    图  3  在姿态1跌落条件下W1构型弹体药柱等效应力演变历程

    Figure  3.  Evolution of the effective stress in the explosive subassembly during the configuration W1 warhead drop impact process with posture 1

    图  4  在姿态1跌落条件下W1构型弹体药柱等效塑性应变演变历程

    Figure  4.  Evolution of the effective plastic strain in the explosive subassembly during the configuration W1 warhead drop impact process with posture 1

    图  5  在姿态3跌落条件下W1构型弹体壳体等效应力演变历程

    Figure  5.  Evolution of the effective stress in the shell during the configuration W1 warhead drop impact process with posture 3

    图  6  W1构型弹体在姿态3跌落条件下药柱等效应力与等效塑性应变演变历程

    Figure  6.  Evolution of the effective stress and effective plastic strain in the explosive subassembly during configuration W1 warhead drop impact process with posture 3

    图  7  药柱考察横截面A-B路径上的等效应力分布

    Figure  7.  Effective stress distribution in the path on the cross section A-B of the explosive subassembly

    图  8  W1构型弹体在不同姿态跌落条件下弹体速度变化历程

    Figure  8.  Variations of the warhead velocity during the configuration W1 warhead drop impact process with various postures

    图  9  W1构型弹体在姿态2跌落条件下壳体和药柱等效应力以及药柱等效塑性应变演变历程

    Figure  9.  Evolution of the effective stress and effective plastic strain in the shell and explosive subassembly during the configuration W1 warhead drop impact process with posture 2

    图  10  W1构型弹体在姿态4跌落条件下药柱等效应力与等效塑性应变演变历程

    Figure  10.  Evolution of the effective stress and effective plastic strain in the explosive subassembly during the configuration W1 warhead drop impact process with posture 4

    图  11  W1构型弹体在姿态5跌落条件下药柱等效应力与等效塑性应变演变历程

    Figure  11.  Evolution of the effective stress and effective plastic strain in the explosive subassembly during the configuration W1 warhead drop impact process with posture 5

    图  12  W1构型弹体在不同跌落姿态条件下的装药最大局域等效塑性应变演化历程

    Figure  12.  Evolution of the maximum effective plastic strain in the explosive subassembly during the configuration W1 warhead drop impact processes with different postures

    图  13  在姿态1跌落条件下W2构型弹体药柱等效应力和等效塑性应变演变历程

    Figure  13.  Evolution of the effective stress and effective plastic strain in the explosive subassembly during the configuration W2 warhead drop impact process with posture 1

    图  14  在姿态1跌落条件下W3构型弹体药柱等效应力和等效塑性应变演变历程

    Figure  14.  Evolution of the effective stress and effective plastic strain in the explosive subassembly during the configuration W3 warhead drop impact process with posture 1

    图  15  在姿态3跌落条件下W2构型弹体药柱等效应力和等效塑性应变演变历程

    Figure  15.  Evolution of the effective stress and effective plastic strain in the explosive subassembly during the configuration W2 warhead drop impact process with posture 3

    图  16  在姿态3跌落条件下W3构型弹体药柱等效应力和等效塑性应变演变历程

    Figure  16.  Evolution of the effective stress and effective plastic strain in the explosive subassembly during the configuration W3 warhead drop impact process with posture 3

    图  17  不同构型弹体在不同姿态跌落条件下的装药局域最大等效塑性应变演化历程

    Figure  17.  Evolution of the maximum effective plastic strain in the explosive subassemblies during the drop impact processes of different configuration warheads with different postures

    图  18  W1构型弹体在姿态1和不同高度跌落条件下的药柱等效应力和等效塑性应变分布

    Figure  18.  Distribution of the effective stress and effective plastic strain in the explosive subassembly during the configuration W1 warhead drop impact processes with posture 1 at different drop heights

    图  19  W1构型弹体在姿态3和不同高度跌落条件下的药柱等效应力和等效塑性应变分布

    Figure  19.  Distribution of the effective stress and effective plastic strain in the explosive subassembles during the configuration W1 warhead drop impact processes with posture 3 at different drop heights

    图  20  W1构型弹体在不同高度跌落条件下的药柱最大等效塑性应变演变历程

    Figure  20.  Evolution of the maximum effective plastic strain in the explosive subassemblies during the configuration W1 warhead drop impact processes at different drop heights

    表  1  材料参数

    Table  1.   Parameters of materials

    部件材料ρ/(kg·m−3)E/GPaνcV/(J·kg−1·K−1)Tr/KTm/K$ {\dot \varepsilon _0} $/s−1
    壳体/隔板G50钢76202050.28 469.030017651
    尾盖TC4钛44281100.31 560.030018781
    靶板Q235钢78002000.29 477.030017931
    装药PBX1900 120.301559.0300 5401
    部件材料A/MPaB/MPanCmD1D2
    壳体/隔板G50钢144513260.3560.0051.12 0.100.76
    尾盖TC4钛109810920.9300.0141.10−0.090.76
    靶板Q235钢 23510500.2500.0151.03 3.200
    装药PBX 15 101.0000.2000.60 0 0
    部件材料D3D4D5c0/(m·s−1)S1γ0a
    壳体/隔板G50钢1.570 0 42801.9902.000.46
    尾盖TC4钛0.480.0143.8751301.0281.230.90
    靶板Q235钢0 0 0 45781.3601.650.45
    装药PBX0 0 0 25652.3801.100
    下载: 导出CSV

    表  2  构型弹体跌落姿态和高度

    Table  2.   Postures and heights of the warhead drop impact

    弹体跌落姿态跌落倾角跌落高度/m
    10° (垂直跌落,尾部向下)3, 12, 20, 40
    2180° (垂直跌落,头部向下)3, 12, 20, 40
    390° (水平跌落)3, 12, 20, 40
    445° (倾斜跌落,尾部向下)3, 12, 20, 40
    5−45° (倾斜跌落,头部向下)3, 12, 20, 40
    下载: 导出CSV

    表  3  不同跌落姿态下W1构型弹体装药最大过载和最大局域等效塑性应变

    Table  3.   Maximum acceleration and effective plastic strain in the explosive subassembly during the configuration W1warhead drop impact with various postures

    弹体跌落姿态最大过载/g最大局域等效塑性应变
    145540.097
    219040.027
    341900.059
    411050.027
    5 9540.011
    下载: 导出CSV

    表  4  不同构型弹体跌落冲击过程中装药最大过载和最大局域等效塑性应变

    Table  4.   The maximum accelerations and the maximum effective plastic strains of the explosive subassemblies during the drop impact processes of the warheads with different configurations

    弹体构型最大过载/g 局域最大等效塑性应变
    姿态1姿态3姿态1姿态3
    W1455441900.0970.059
    W2450642460.1600.061
    W3537550030.1400.083
    下载: 导出CSV

    表  5  不同跌落高度下W1构型弹体药柱最大过载和最大局域等效塑性应变

    Table  5.   The maximum acceleration and the maximum effective plastic strain in the explosive subassemblies during the configuration W3 warhead drop impact processes at different drop heights

    跌落高度/m最大过载/g局域最大等效塑性应变
    姿态1姿态3姿态1姿态3
    3224923030.0420.013
    12455441900.0970.059
    20589053890.1460.088
    40830075360.2140.144
    下载: 导出CSV
  • [1] 张学伦. 战斗部跌落安全性试验方法的述评 [J]. 兵器装备工程学报, 2018, 39(7): 16–19. DOI: 10.11809/bqzbgcxb2018.07.004.

    ZHANG X L. Review of test methods for warhead drop safety [J]. Journal of Ordnance Equipment Engineering, 2018, 39(7): 16–19. DOI: 10.11809/bqzbgcxb2018.07.004.
    [2] 谢涛, 吕红超, 郝陈朋. 基于LS-DYNA的导弹战斗部跌落安全性分析 [J]. 兵器装备工程学报, 2018, 39(8): 26–29. DOI: 10.11809/bqzbgcxb2018.08.006.

    XIE T, LYU H C, HAO C P. Analysis on drop safety of missile warhead based on LS-DYNA [J]. Journal of Ordnance Equipment Engineering, 2018, 39(8): 26–29. DOI: 10.11809/bqzbgcxb2018.08.006.
    [3] 李广嘉, 周涛, 曹玉武, 等. 带舱大型战斗部跌落响应数值分析 [J]. 高压物理学报, 2018, 32(4): 045106. DOI: 10.11858/gywlxb.20170584.

    LI G J, ZHOU T, CAO Y W, et al. Numerical analysis of falling response of large warhead in cabin [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045106. DOI: 10.11858/gywlxb.20170584.
    [4] 王晨, 陈朗, 鲁峰, 等. 炸药跌落响应数值模拟分析 [J]. 含能材料, 2012, 20(6): 748–753. DOI: 10.3969/j.issn.1006-9941.2012.06.019.

    WANG C, CHEN L, LU F, et al. Numerical simulation for spigot tests [J]. Chinese Journal of Energetic Materials, 2012, 20(6): 748–753. DOI: 10.3969/j.issn.1006-9941.2012.06.019.
    [5] DAI X G, HUANG Q, HUANG F L, et al. The development of a confined impact test for evaluating the safety of polymer-bonded explosives during warhead penetration [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 665–673. DOI: 10.1002/prep.201400256.
    [6] PICART D, JUNQUA-MOULLET A. Oblique impacts and friction of HMX and/or TATB-based PBXs [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(12): 1431–1438. DOI: 10.1002/prep.201700184.
    [7] PARKER G R, HOLMES M D, HEATWOLE E M, et al. Direct observation of frictional ignition in dropped HMX-based polymer-bonded explosives [J]. Combustion and Flame, 2020, 221: 180–193. DOI: 10.1016/j.combustflame.2020.07.028.
    [8] Jane’s IHS Markit. BLU-109/B penetrator [J]. Jane’s Air-Launched Weapons, 2019.
    [9] 邓佳杰, 张先锋, 陈东东, 等. 串联随进弹侵彻预开孔靶弹道轨迹的数值模拟 [J]. 兵工学报, 2016, 37(5): 808–816. DOI: 10.3969/j.issn.1000-1093.2016.05.006.

    DENG J J, ZHANG X F, CHEN D D, et al. Numerical simulation of the trajectory of travelling projectile penetrating into pre-drilled target [J]. Acta Armamentarii, 2016, 37(5): 808–816. DOI: 10.3969/j.issn.1000-1093.2016.05.006.
    [10] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. Hague, Netherlands: International Ballistics Committee, 1983: 541-547.
    [11] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [12] 王礼立, 胡时胜, 杨黎明, 等. 材料动力学 [M]. 合肥: 中国科学技术大学出版社, 2017.
    [13] 田杰, 胡时胜. G50钢动态力学性能的实验研究 [J]. 工程力学, 2006, 23(6): 107–109,101. DOI: 10.3969/j.issn.1000-4750.2006.06.019.

    TIAN J, HU S S. Research of dynamic mechanical behaviors of G50 steel [J]. Engineering Mechanics, 2006, 23(6): 107–109,101. DOI: 10.3969/j.issn.1000-4750.2006.06.019.
    [14] 陈刚, 陈忠富, 陶俊林, 等. TC4动态力学性能研究 [J]. 实验力学, 2005, 20(4): 605–609. DOI: 10.3969/j.issn.1001-4888.2005.04.019.

    CHEN G, CHEN Z F, TAO J L, et al. Study on plastic constitutive relationship parameters of TC4 titanium [J]. Journal of Experimental Mechanics, 2005, 20(4): 605–609. DOI: 10.3969/j.issn.1001-4888.2005.04.019.
    [15] MEYER JR H W, KLEPONIS D S. Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration [J]. International Journal of Impact Engineering, 2001, 26(1): 509–521. DOI: 10.1016/S0734-743X(01)00107-5.
    [16] 郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系 [J]. 爆炸与冲击, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.

    GUO Z T, GAO B, GUO Z, et al. Dynamic constitutive relation based on J-C model of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.
    [17] LI J C, CHEN X W, HUANG F L. FEM analysis on the self-sharpening behavior of tungsten fiber/metallic glass matrix composite long rod [J]. International Journal of Impact Engineering, 2015, 86: 67–83. DOI: 10.1016/j.ijimpeng.2015.07.006.
    [18] LI J C, CHEN X W, HUANG F L. Ballistic performance of tungsten particle / metallic glass matrix composite long rod [J]. Defence Technology, 2019, 15(2): 132–145. DOI: 10.1016/j.dt.2018.06.009.
    [19] 陈建良, 李继承. 钨纤维增强金属玻璃复合材料分段弹体侵彻性能研究 [J]. 爆炸与冲击, 2020, 40(6): 063201. DOI: 10.11883/bzycj-2019-0379.

    CHEN J L, LI J C. Ballistic behavior of tungsten fiber/metallic glass matrix composite segmented rods [J]. Explosion and Shock Waves, 2020, 40(6): 063201. DOI: 10.11883/bzycj-2019-0379.
    [20] DAI X G, WEN Y S, HUANG H, et al. Impact response characteristics of a cyclotetramethylene tetranitramine based polymer-bonded explosives under different temperatures [J]. Journal of Applied Physics, 2013, 114(11): 114906. DOI: 10.1063/1.4820248.
    [21] 李尚昆, 黄西成, 王鹏飞. 高聚物黏结炸药的力学性能研究进展 [J]. 火炸药学报, 2016, 39(4): 1–11. DOI: 10.14077/j.issn.1007-7812.2016.04.001.

    LI S K, HUANG X C, WANG P F. Recent advances in the investigation on mechanical properties of PBX [J]. Chinese Journal of Explosives and Propellants, 2016, 39(4): 1–11. DOI: 10.14077/j.issn.1007-7812.2016.04.001.
    [22] 魏强, 黄西成, 陈刚, 等. 高聚物粘结炸药动态损伤破坏的数值刻画 [J]. 兵工学报, 2019, 40(7): 1381–1389. DOI: 10.3969/j.issn.1000-1093.2019.07.007.

    WEI Q, HUANG X C, CHEN G, et al. Numerical characterization of dynamic damage of PBX explosive [J]. Acta Armamentarii, 2019, 40(7): 1381–1389. DOI: 10.3969/j.issn.1000-1093.2019.07.007.
    [23] WANG X J, WU Y Q, HUANG F L. Thermal-mechanical-chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading [J]. Journal of Hazardous Materials, 2017, 321: 256–267. DOI: 10.1016/j.jhazmat.2016.08.061.
    [24] 胡偲, 吴艳青, 黄风雷. 高温下带金属壳PBX炸药低速撞击敏感性数值模拟 [J]. 爆炸与冲击, 2019, 39(4): 041403. DOI: 10.11883/bzycj-2017-0254.

    HU C, WU Y Q, HUANG F L. Numerical simulation of confined PBX charge under low velocity impact at high temperature [J]. Explosion and Shock Waves, 2019, 39(4): 041403. DOI: 10.11883/bzycj-2017-0254.
    [25] 傅华, 李俊玲, 谭多望. PBX炸药本构关系的实验研究 [J]. 爆炸与冲击, 2012, 32(3): 231–236. DOI: 10.11883/1001-1455(2012)03-0231-06.

    FU H, LI J L, TAN D W. Experimental study on constitutive relations for plastic-bonded explosives [J]. Explosion and Shock Waves, 2012, 32(3): 231–236. DOI: 10.11883/1001-1455(2012)03-0231-06.
    [26] 王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 1985.
    [27] 高金霞, 赵卫刚, 郑腾. 侵彻战斗部装药抗过载技术研究 [J]. 火工品, 2008(4): 4–7. DOI: 10.3969/j.issn.1003-1480.2008.04.002.

    GAO J X, ZHAO W G, ZHENG T. Study on the anti-overloading technique for penetrating warhead charge [J]. Initiators and Pyrotechnics, 2008(4): 4–7. DOI: 10.3969/j.issn.1003-1480.2008.04.002.
    [28] MA D Z, CHEN P W, ZHOU Q, et al. Ignition criterion and safety prediction of explosives under low velocity impact [J]. Journal of Applied Physics, 2013, 114(11): 113505. DOI: 10.1063/1.4821431.
    [29] ZEMAN S, JUNGOVÁ M. Sensitivity and performance of energetic materials [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 426–451. DOI: 10.1002/prep.201500351.
    [30] LIU M, HUANG X C, WU Y Q, et al. Numerical simulations of the damage evolution for plastic-bonded explosives subjected to complex stress states [J]. Mechanics of Materials, 2019, 139: 103179. DOI: 10.1016/j.mechmat.2019.103179.
    [31] LIU M, HUANG X C, WU Y Q, et al. Modeling of the deformation and damage of plastic-bonded explosive in consideration of pressure and strain rate effects [J]. International Journal of Impact Engineering, 2020, 146: 103722. DOI: 10.1016/j.ijimpeng.2020.103722.
  • 加载中
图(20) / 表(5)
计量
  • 文章访问数:  545
  • HTML全文浏览量:  157
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-06-01
  • 网络出版日期:  2022-06-06
  • 刊出日期:  2023-03-05

目录

    /

    返回文章
    返回