孔底间隔装药孔壁冲击压力特性

楼晓明 官旭晖 曾令峰 郭文康 岳彬 卢韦

楼晓明, 官旭晖, 曾令峰, 郭文康, 岳彬, 卢韦. 孔底间隔装药孔壁冲击压力特性[J]. 爆炸与冲击, 2023, 43(6): 065201. doi: 10.11883/bzycj-2022-0109
引用本文: 楼晓明, 官旭晖, 曾令峰, 郭文康, 岳彬, 卢韦. 孔底间隔装药孔壁冲击压力特性[J]. 爆炸与冲击, 2023, 43(6): 065201. doi: 10.11883/bzycj-2022-0109
LOU Xiaoming, GUAN Xuhui, ZENG Lingfeng, GUO Wenkang, YUE Bin, LU Wei. Characteristics of the impact pressure of the hole wall by interval charge at the hole bottom[J]. Explosion And Shock Waves, 2023, 43(6): 065201. doi: 10.11883/bzycj-2022-0109
Citation: LOU Xiaoming, GUAN Xuhui, ZENG Lingfeng, GUO Wenkang, YUE Bin, LU Wei. Characteristics of the impact pressure of the hole wall by interval charge at the hole bottom[J]. Explosion And Shock Waves, 2023, 43(6): 065201. doi: 10.11883/bzycj-2022-0109

孔底间隔装药孔壁冲击压力特性

doi: 10.11883/bzycj-2022-0109
基金项目: 国家自然科学基金(52109124)
详细信息
    作者简介:

    楼晓明(1972-  ),男,博士,教授,331261323@qq.com

    通讯作者:

    官旭晖(1997-  ),男,硕士研究生,1119578451@qq.com

  • 中图分类号: O383

Characteristics of the impact pressure of the hole wall by interval charge at the hole bottom

  • 摘要: 在良好破碎效果的前提下,通过降低孔底冲击波峰值压力来减小上向扇形深孔孔底以上岩体振动,是降低振动保护上部建筑的有效措施。为确定合理的孔底空气柱长度,采用理论研究和现场爆破试验相结合的方法,研究了孔底空气不耦合装药时空气柱长度对孔壁冲击压力的影响规律,得到了炮孔底部空气间隔不耦合装药条件下轴向不耦合因数和孔壁冲击压力曲线;基于岩石动态抗压强度,确定了适用于软、中、硬岩石的合理底部轴向空气间隔长度范围。为检验结论的合理性,进行现场验证试验并分析了爆破后采场顶板成型和爆堆块度的状况,结果表明:空气间隔层使冲击压力作用时间显著增加,而冲击压力峰值有明显减小;当不耦合因数为1.5即空气柱长度为200 mm时,孔底峰值压力衰减了73.4%,当不耦合因数为4即空气柱长度为1 200 mm时,孔底峰值压力衰减了96.7%;当空气间隔层大于60 cm时,炮孔底部出现压力较低的区域。合理的底部空气间隔长度,不仅能保证良好的爆破块度,也能减小孔底峰值压力、降低爆破振动,保护采场顶板和其他保护对象。
  • 图  1  反射稀疏波的波系图

    Figure  1.  Wave system diagram of reflected rarefaction waves

    图  2  冲击波遇孔壁反射的波系图

    Figure  2.  Wave system diagram of a shock wave reflected by a hole wall

    图  3  冲击波遇孔壁反射的压力-速度关系

    Figure  3.  The relationship between pressure and speed of a shock wave reflected by a hole wall

    图  4  孔底间隔装药孔内爆破冲击波的波系图

    Figure  4.  Wave system diagram of blasting shock wave in the interval charging hole

    图  5  压力随时间变化的理论曲线

    Figure  5.  Theoretical curves of pressure versus time

    图  6  压力随测点变化的理论曲线

    Figure  6.  Theoretical curves of pressure versus measuring point

    图  7  动态测试流程

    Figure  7.  Dynamic testing flow chart

    图  8  试验系统

    Figure  8.  The experimental system

    图  9  应变计的连接

    Figure  9.  Strain gauge connection

    图  10  成型的应变砖

    Figure  10.  Formed strain bricks

    图  11  厚壁圆筒照片

    Figure  11.  Thick wall cylinders

    图  12  应变砖布置

    Figure  12.  Distribution of strain bricks

    图  13  试验的网络连接和防护措施

    Figure  13.  Network connection and protective measures for the experiment

    图  14  不同不耦合因数时的孔底压力曲线

    Figure  14.  Pressure curves at the hole bottom with different uncoupling factors

    图  15  不同不耦合因数时的炮孔内最大峰值压力曲线

    Figure  15.  Maximum peak pressure curve in the blast hole with different uncoupling factors

    图  16  相同测点峰值压力随时间的变化曲线

    Figure  16.  Peak pressure curves with time at the same measuring point

    图  17  不同测点的峰值压力曲线

    Figure  17.  Peak pressure curves at different measuring points

    图  18  空气间隔器

    Figure  18.  Photos of air spacer

    图  19  炮孔布置

    Figure  19.  Blast hole layout

    图  20  炮孔装药结构

    Figure  20.  Blast hole charging structure

    图  21  普通导爆管分段起爆网路

    Figure  21.  Segmented initiation network of ordinary detonating tube

    图  22  未采用底部空气间隔装药时的顶板

    Figure  22.  The roof without bottom air interval charging

    图  23  底部空气间隔装药爆破的顶板和爆堆

    Figure  23.  The roof and blasting pile with bottom air interval charging

    表  1  不同不耦合因数时的模型尺寸

    Table  1.   Model dimensions with different uncoupling factors

    不耦合因数模型长度/m测点间距/mm
    1.50.8 50
    2.01.0 67
    2.51.2 83
    3.01.4100
    3.51.6117
    4.01.8133
    下载: 导出CSV

    表  2  底部间隔装药的爆破试验结果

    Table  2.   The results of the bottom air interval charge blasting experiments

    试验轴向不耦合因数空气柱长度/mm峰值压力/GPa
    11.52005.467
    21.52005.481
    32.04005.352
    42.04005.605
    52.56005.396
    62.56005.421
    73.08005.253
    83.08005.085
    93.51 0005.335
    103.51 0005.278
    114.01 2005.285
    124.01 2005.475
    下载: 导出CSV

    表  3  试验1各测点的压力

    Table  3.   Pressure at each measuring point in experiment 1

    测点距孔底距/mm峰值时刻/μs峰值压力/GPa
    S16001015.467
    S2550925.327
    S3500785.221
    S4450655.331
    S5400515.467
    S6350415.336
    S7300295.197
    S8250155.016
    S920024.232
    S10150203.311
    S11100382.575
    S1250781.936
    S130701.553
    S140811.449
    S150731.554
    S160791.451
    下载: 导出CSV

    表  4  不同岩石的合理轴向底部空气间隔长度

    Table  4.   Reasonable axial bottom air gap lengths for different rocks

    岩石单轴抗压强度/MPa动态抗压强度/MPa空气柱长度/mm不耦合因数
    软岩<20<400400~6002.0~2.5
    中硬岩20~40400~800200~4001.5~2.0
    硬岩>40>800<200<1.5
    下载: 导出CSV

    表  5  现场试验参数

    Table  5.   Parameters of the field experiment

    起爆方式装药单耗/(kg·m−3)段最大装药量/kg总装药量/kg孔数孔径/mm总孔深/m总装药长度/m总填塞长度/m
    分段微差0.5479.6672.54260298.4214.484
    下载: 导出CSV
  • [1] MELNIKOV N V. Charge construction influence on explosion operations efficiency [C] // Reports of the Ⅵ Science Symposium on Drilling, Explosives, Explosion Operations and Study of Physical and Mechanical Properties of Rocks. Rolla, USA, 1962.
    [2] MELNIKOV N V, MARCHENKO L N. Effective methods of application of explosion energy in mining and construction [C] // The 12th U. S. Symposium on Rock Mechanics. Rolla, USA: American Rock Mechanics Association, 1971: 359–378.
    [3] FOURNEY W L, BARKER D B, HOLLOWAY D C. Model studies of explosive well stimulation techniques [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(2): 113–127. DOI: 10.1016/0148-9062(81)90737-3.
    [4] MOXON N T, MEAD D, RICHARDSON S B. Air-decked blasting techniques: some collaborative experiments [J]. Transactions of the Institution of Mining and Metallurgy, Section A: Mining Industry, 1993, 102: A25–A30.
    [5] CHAKRABORTY A K, JETHWA J L. Feasibility of air-deck blasting in various rock mass conditions: a case study [C] // MOHANTY B. Rock fragmentation by blasting. London: CRC Press, 1996: 343-349.
    [6] JHANWAR J C, CAKRABORTY A K, ANIREDDY H N, et al. Application of air decks in production blasting to improve fragmentation and economics of an open pit mine [J]. Geotechnical & Geological Engineering, 1999, 17(1): 37–57. DOI: 10.1023/A:1008899928839.
    [7] 潘强, 张继春, 石洪超, 等. 单孔不耦合装药爆破的岩体损伤分布特征研究 [J]. 振动与冲击, 2019, 38(18): 264–269. DOI: 10.13465/j.cnki.jvs.2019.18.037.

    PAN Q, ZHANG J C, SHI H C, et al. Distribution characteristics of the rock mass damage caused by single-hole decoupling charge blasting [J]. Journal of Vibration and Shock, 2019, 38(18): 264–269. DOI: 10.13465/j.cnki.jvs.2019.18.037.
    [8] 朱红兵, 卢文波, 吴亮. 空气间隔装药爆破机理研究 [J]. 岩土力学, 2007, 28(5): 986–990. DOI: 10.16285/j.rsm.2007.05.025.

    ZHU H B, LU W B, WU L. Research on mechanism of air-decking technique in bench blasting [J]. Rock and Soil Mechanics, 2007, 28(5): 986–990. DOI: 10.16285/j.rsm.2007.05.025.
    [9] 曹祺, 王林桂, 马宏昊, 等. 底部空气柱装药爆破减振理论和实验研究 [J]. 工程爆破, 2020, 26(2): 42–48, 64. DOI: 10.3969/j.issn.1006-7051.2020.02.006.

    CAO Q, WANG L G, MA H H, et al. Research on blasting vibration reduction theory and experiment of bottom air column charging [J]. Engineering Blasting, 2020, 26(2): 42–48, 64. DOI: 10.3969/j.issn.1006-7051.2020.02.006.
    [10] LOU X M, WANG Z C, CHEN B G, et al. Theoretical calculation and experimental analysis on initial shock pressure of borehole wall under axial decoupled charge [J]. Shock and Vibration, 2018, 2018: 7036726. DOI: 10.1155/2018/7036726.
    [11] 张馨, 孙金山, 张湘平, 等. 钻孔爆破炮孔孔壁压力计算模型 [J]. 爆破, 2021, 38(3): 1–5. DOI: 10.3963/j.issn.1001-487X.2021.03.001.

    ZHANG X, SUN J S, ZHANG X P, et al. Calculation model of blasthole pressure [J]. Blasting, 2021, 38(3): 1–5. DOI: 10.3963/j.issn.1001-487X.2021.03.001.
    [12] 杨国梁, 杨仁树, 姜琳琳. 轴向间隔装药爆破沿炮孔的压力分布 [J]. 爆炸与冲击, 2012, 32(6): 653–657. DOI: 10.11883/1001-1455(2012)06-0653-05.

    YANG G L, YANG R S, JIANG L L. Pressure distribution along borehole with axial air-deck charge blasting [J]. Explosion and Shock Waves, 2012, 32(6): 653–657. DOI: 10.11883/1001-1455(2012)06-0653-05.
    [13] 吴亮, 钟冬望, 卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析 [J]. 岩土力学, 2009, 30(10): 3109–3114. DOI: 10.16285/j.rsm.2009.10.045.

    WU L, ZHONG D W, LU W B. Study of concrete damage under blast loading of air-decking [J]. Rock and Soil Mechanics, 2009, 30(10): 3109–3114. DOI: 10.16285/j.rsm.2009.10.045.
    [14] 吴亮, 卢文波, 钟冬望, 等. 混凝土介质中空气间隔装药的爆破机理 [J]. 爆炸与冲击, 2010, 30(1): 58–64. DOI: 10.11883/1001-1455(2010)01-0058-07.

    WU L, LU W B, ZHONG D W, et al. Blasting mechanism of air-decked charge in concrete medium [J]. Explosion and Shock Waves, 2010, 30(1): 58–64. DOI: 10.11883/1001-1455(2010)01-0058-07.
    [15] 池恩安, 梁开水, 赵明生. 孔底空气间隔装药降振试验研究 [J]. 煤炭学报, 2012, 37(6): 944–950. DOI: 10.13225/j.cnki.jccs.2012.06.005.

    CHI E A, LIANG K S, ZHAO M S. Experimental study on vibration reduction of the hole-bottom air space charging [J]. Journal of China Coal Society, 2012, 37(6): 944–950. DOI: 10.13225/j.cnki.jccs.2012.06.005.
    [16] 张志呈, 熊文, 吝曼卿. 炮孔底部空气间隔装药结构爆破理论与模型试验 [J]. 露天采矿技术, 2011(1): 40–44, 47. DOI: 10.13235/j.cnki.ltcm.2011.01.025.

    ZHANG Z C, XIONG W, LIN M Q. The blasting theory and model experiment of blast hole bottom air interval charge structure [J]. Opencast Mining Technology, 2011(1): 40–44, 47. DOI: 10.13235/j.cnki.ltcm.2011.01.025.
    [17] 周毓麟. 一维非定常流体力学 [M]. 北京: 科学出版社, 1990: 144–170.
    [18] 孙锦山, 朱建士. 理论爆轰物理 [M]. 北京: 国防工业出版社, 1995: 32–36.
    [19] 李维新. 一维不定常流与冲击波 [M]. 北京: 国防工业出版社, 2003: 148–180.
    [20] HENRYCH J. 爆炸动力学及其应用 [M]. 熊建国, 译. 北京: 科学出版社, 1987: 123–151.
    [21] 王光祖, 张运生. 冲击波和爆轰波的共异性 [J]. 超硬材料工程, 2005, 17(2): 14–17. DOI: 10.3969/j.issn.1673-1433.2005.02.004.

    WANG G Z, ZHANG Y S. Similarity and difference of shock wave and detonation wave [J]. Superhard Material Engineering, 2005, 17(2): 14–17. DOI: 10.3969/j.issn.1673-1433.2005.02.004.
    [22] 汪旭光. 爆破设计与施工 [M]. 北京: 冶金工业出版社, 2011: 206–208.
    [23] 李夕兵, 古德生. 岩石冲击动力学 [M]. 长沙: 中南工业大学出版社, 1994: 51–64.
    [24] 单仁亮. 岩石冲击破坏力学模型及其随机性研究 [D]. 北京: 中国矿业大学(北京), 1997: 53–54.
  • 加载中
图(23) / 表(5)
计量
  • 文章访问数:  529
  • HTML全文浏览量:  112
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-22
  • 修回日期:  2022-04-22
  • 网络出版日期:  2022-05-05
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回