Damage effects of underwater explosions on gravity dams and optimal standoff distances
-
摘要: 为研究不同爆距水下爆炸对重力坝的毁伤效应,并探讨是否存在“最优爆距”,基于离心模型试验建立了炸药-库水-空气-重力坝结构的全耦合数值模型,并设计了60组数值计算工况。不同工况水深均为600 mm,炸药量为2.2 g,重力坝模型几何比尺为1/80,包含5组爆深(50~250 mm),每组爆深对应12组爆距,爆距范围为10~200 mm,相应比例爆距范围为0.077~1.54 m/kg1/3。对比分析了不同爆距水下爆炸对重力坝的毁伤程度,并定量比较了重力坝平均损伤、单元删除率、应力、应变等参数。结果表明,对于重力坝整体结构破坏,如重力坝整体弯曲导致的拉伸破坏,水下爆炸对重力坝的毁伤效应存在“最优爆距”,即随着爆距增加重力坝毁伤程度先增加后降低;与之类似,随着爆距的增加,重力坝上游坝面损伤区域的平均损伤、重力坝单元删除率、坝踵最大拉应力平均值和坝踵最大拉应变平均值先增加后降低且在40 mm爆距附近达到最大值。保持水深、炸药量和重力坝几何模型相同,5组不同爆深近水面水下爆炸对重力坝毁伤效应的“最优爆距”均在40 mm附近,表明近水面水下爆炸时爆深对“最优爆距”不存在显著影响。Abstract: To investigate the standoff distance of underwater explosions on the damage to gravity dams and to explore whether there is an “optimal standoff distance”, a numerical model of a fully-coupled explosive-water-air-gravity dam was established. The numerical model was validated by comparing it with centrifuge test results. The results demonstrated that the employed numerical model could predict the dam failures and the effect of bubble pulse well. Then, a numerical scheme including 60 numerical calculations was designed. In these calculations, the water depth is 600 mm, the explosive mass is 2.2 g, and the geometrical scaling factor of the gravity dam model is 1/80. The detonation depth ranges from 50 to 250 mm with five detonation depths. Each detonation depth corresponds to 12 standoff distances ranging from 10 to 200 mm, with the scaled standoff distance ranging from 0.077 to 1.54 m/kg1/3. The damage degrees to the gravity dam under underwater explosions with different standoff distances are compared. Quantitative comparisons of dam average damage, element erosion rate, stress, and strain are also presented. The results show that for the overall structural failure of the gravity dam, such as the structural bending-induced tensile failure, there is an “optimal standoff distance” for the damage effects of underwater explosions on gravity dams, that is, with the increase of standoff distance, the damage degree of gravity dam increases first and then decreases. The quantitative results also indicate that with the increase of standoff distance, the average damage of the damaged area in the dam upstream face, the element erosion rate, the average value of the maximum tensile stress of the dam heel, and the average value of the maximum tensile strain of the dam heel all increase first and then decrease, and reach their maximum values around a standoff distance of 40 mm. With identical water depth, explosive mass, and geometrical model of gravity dam, the “optimal standoff distances” for the damage effects of near-surface underwater explosions at five different detonation depths on the gravity dam are all near 40 mm. It suggests that for near-surface underwater explosions, the detonation depth owns limited influence on the “optimal standoff distance”.
-
表 1 混凝土本构模型参数
Table 1. Parameters required in the concrete model
a1 a2/Pa−1 d1 d2 c1 c2 εfrac 0.5876 0.25 × 10–3 0.04 1.5 3 6.93 0.015 Test G/g W/g L/mm R/mm Hw/mm UE-01 80 2.2 100 20 600 UE-02 50 1.1 100 100 600 UE-03 50 1.1 300 300 600 表 3 上游坝面损伤面积占比θ和损伤区域的平均损伤δ
Table 3. The damage area ratio θ and the average damage δ of the dam upstream face
R/mm θ δ L=50 mm L=100 mm L=150 mm L=200 mm L=250 mm L=50 mm L=100 mm L=150 mm L=200 mm L=250 mm 10 0.8159 0.8308 0.8597 0.8569 0.8490 0.2451 0.2519 0.2268 0.2310 0.2172 20 0.8272 0.8332 0.8718 0.8675 0.8653 0.2569 0.2733 0.2512 0.2527 0.2263 30 0.8478 0.8526 0.8664 0.8831 0.8754 0.2608 0.2743 0.2642 0.2602 0.2353 40 0.8195 0.8595 0.8745 0.8817 0.8745 0.2611 0.2786 0.2695 0.2643 0.2395 50 0.8305 0.8793 0.8696 0.8989 0.8718 0.2540 0.2649 0.2698 0.2523 0.2362 60 0.8319 0.8415 0.8675 0.8933 0.8771 0.2616 0.2612 0.2673 0.2453 0.2353 70 0.8416 0.8748 0.8785 0.8936 0.8765 0.2453 0.2510 0.2494 0.2309 0.2296 80 0.8418 0.8588 0.8898 0.8668 0.8831 0.2335 0.2443 0.2363 0.1996 0.2156 90 0.8415 0.8664 0.8628 0.8992 0.8873 0.2238 0.2280 0.2265 0.2166 0.2104 100 0.8390 0.8727 0.8693 0.8914 0.8872 0.2086 0.2210 0.2145 0.2098 0.2002 -
[1] WANG G H, ZHANG S R, KONG Y, et al. Comparative study of the dynamic response of concrete gravity dams subjected to underwater and air explosions [J]. Journal of Performance of Constructed Facilities, 2015, 29(4): 04014092. DOI: 10.1061/(ASCE)CF.1943-5509.0000589. [2] WANG G H, LU W B, YANG G D, et al. A state-of-the-art review on blast resistance and protection of high dams to blast loads [J]. International Journal of Impact Engineering, 2020, 139: 103529. DOI: 10.1016/j.ijimpeng.2020.103529. [3] 陈叶青, 吕林梅, 汪剑辉, 等. 爆炸冲击荷载下的大坝抗爆性能及防护研究进展 [J]. 防护工程, 2021, 43(2): 1–10. DOI: 10.3969/j.issn.1674-1854.2021.02.001.CHEN Y Q, LV L M, WANG J H, et al. Review of blast resistance performance and protection of dams under blast shock load [J]. Protective Engineering, 2021, 43(2): 1–10. DOI: 10.3969/j.issn.1674-1854.2021.02.001. [4] 陈叶青, 吕林梅, 王高辉, 等. 大坝抗爆性能评估研究进展 [J]. 土木工程学报, 2021, 54(10): 9–19. DOI: 10.15951/j.tmgcxb.2021.10.003.CHEN Y Q, LV L M, WANG G H, et al. Review on the blast-resistance performance evaluation of dams [J]. China Civil Engineering Journal, 2021, 54(10): 9–19. DOI: 10.15951/j.tmgcxb.2021.10.003. [5] VANADIT-ELLIS W, DAVIS L K. Physical modeling of concrete gravity dam vulnerability to explosions [C]//2010 International Water Side Security Conference. Carrara: IEEE, 2010: 1-11. DOI: 10.1109/WSSC.2010.5730291. [6] HUANG X P, HU J, ZHANG X D, et al. Bending failure of a concrete gravity dam subjected to underwater explosion [J]. Journal of Zhejiang University-Science A, 2020, 21(12): 976–991. DOI: 10.1631/jzus.A2000194. [7] HUANG X P, KONG X Z, HU J, et al. Failure modes of concrete gravity dam subjected to near-field underwater explosion: centrifuge test and numerical simulation [J]. Engineering Failure Analysis, 2022, 137: 106243. DOI: 10.1016/j.engfailanal.2022.106243. [8] HUANG X P, HU J, ZHANG X D, et al. Effect of bubble pulse on concrete gravity dam subjected to underwater explosion: centrifuge test and numerical simulation [J]. Ocean Engineering, 2022, 243: 110291. DOI: 10.1016/j.oceaneng.2021.110291. [9] ZHANG S R, WANG G H, WANG C, et al. Numerical simulation of failure modes of concrete gravity dams subjected to underwater explosion [J]. Engineering Failure Analysis, 2014, 36: 49–64. [10] 王高辉, 张社荣, 卢文波, 等. 水下爆炸冲击荷载下混凝土重力坝的破坏效应 [J]. 水利学报, 2015, 46(6): 723–731. DOI: 10.13243/j.cnki.slxb.20140908.WANG G H, ZHANG S R, LU W B, et al. Damage effects of concrete gravity dams subjected to underwater explosion [J]. Journal of Hydraulic Engineering, 2015, 46(6): 723–731. DOI: 10.13243/j.cnki.slxb.20140908. [11] LI Q, WANG G H, LU W B, et al. Influence of reservoir water levels on the protective performance of concrete gravity dams subjected to underwater explosions [J]. Journal of Structural Engineering, 2018, 144(9): 04018143. [12] WANG C, WEI P Y, WANG X H, et al. Blast-resistance and damage evaluation of concrete gravity dam exposed to underwater explosion: considering the initial stress field [J]. KSCE Journal of Civil Engineering, 2021, 25(8): 2922–2935. DOI: 10.1007/s12205-021-1650-0. [13] ZHANG Q L, HU Y G, LIU M S, et al. Role of negative pressure in structural responses of gravity dams to underwater explosion loadings: the need to consider local cavitation [J]. Engineering Failure Analysis, 2021, 122: 105270. DOI: 10.1016/j.engfailanal.2021.105270. [14] SHU Y Z, WANG G H, LU W B, et al. Damage characteristics and failure modes of concrete gravity dams subjected to penetration and explosion [J]. Engineering Failure Analysis, 2022, 134: 106030. DOI: 10.1016/j.engfailanal.2022.106030. [15] ZHU J G, CHEN Y Q, LYU L. Failure analysis for concrete gravity dam subjected to underwater explosion: a comparative study [J]. Engineering Failure Analysis, 2022, 134: 106052. DOI: 10.1016/j.engfailanal.2022.106052. [16] REN X D, SHAO Y. Numerical investigation on damage of concrete gravity dam during noncontact underwater explosion [J]. Journal of Performance of Constructed Facilities, 2019, 33(6): 04019066. DOI: 10.1061/(ASCE)CF.1943-5509.0001332. [17] 吕林梅, 陈叶青, 魏晓丽, 等. 基于毁伤面积率指标的混凝土重力坝毁伤评估方法研究 [J]. 防护工程, 2020, 42(2): 28–32. DOI: 10.3969/j.issn.1674-1854.2020.02.005.LV L M, CHEN Y Q, WEI X L, et al. Study of damage assessment method of concrete gravity dam based on damage-area ratio index [J]. Protective Engineering, 2020, 42(2): 28–32. DOI: 10.3969/j.issn.1674-1854.2020.02.005. [18] 李麒, 王高辉, 卢文波, 等. 混凝土重力坝水下爆炸毁伤快速识别方法研究 [J]. 振动与冲击, 2020, 39(24): 46–53,62. DOI: 10.13465/j.cnki.jvs.2020.24.007.LI Q, WANG G H, LU W B, et al. A rapid identification method for underwater explosion damage of a concrete gravity dam [J]. Journal of Vibration and Shock, 2020, 39(24): 46–53,62. DOI: 10.13465/j.cnki.jvs.2020.24.007. [19] WANG X H, ZHANG S R, WANG C, et al. Blast-induced damage and evaluation method of concrete gravity dam subjected to near-field underwater explosion [J]. Engineering Structures, 2020, 209: 109996. DOI: 10.1016/j.engstruct.2019.109996. [20] 张社荣, 王高辉, 王超, 等. 水下爆炸冲击荷载作用下混凝土重力坝的破坏模式 [J]. 爆炸与冲击, 2012, 32(5): 501–507. DOI: 10.11883/1001-1455(2012)05-0501-07.ZHANG S R, WANG G H, WANG C, et al. Failure mode analysis of concrete gravity dam subjected to underwater explosion [J]. Explosion and Shock Waves, 2012, 32(5): 501–507. DOI: 10.11883/1001-1455(2012)05-0501-07. [21] 张启灵, 李端有, 李波. 水下爆炸冲击作用下重力坝的损伤发展及破坏模式 [J]. 爆炸与冲击, 2012, 32(6): 609–615. DOI: 10.11883/1001-1455(2012)06-0609-07.ZHANG Q L, LI D Y, LI B. Damage propagation and failure mode of gravity dam subjected to underwater explosion [J]. Explosion and Shock Waves, 2012, 32(6): 609–615. DOI: 10.11883/1001-1455(2012)06-0609-07. [22] WANG G H, ZHANG S R. Damage prediction of concrete gravity dams subjected to underwater explosion shock loading [J]. Engineering Failure Analysis, 2014, 39: 72–91. DOI: 10.1016/j.engfailanal.2014.01.018. [23] HUANG X P, KONG X Z, HU J, et al. The influence of free water content on ballistic performances of concrete targets [J]. International Journal of Impact Engineering, 2020, 139: 103530. DOI: 10.1016/j.ijimpeng.2020.103530. [24] ROSSI P. A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates [J]. Materials and Structures, 1991, 24(6): 422–424. DOI: 10.1007/BF02472015. [25] HUANG X P, KONG X Z, CHEN Z Y, et al. Equation of state for saturated concrete: a mesoscopic study [J]. International Journal of Impact Engineering, 2020, 144: 103669. DOI: 10.1016/j.ijimpeng.2020.103669. [26] KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006. [27] ZHAO F Q, WEN H M. Effect of free water content on the penetration of concrete [J]. International Journal of Impact Engineering, 2018, 121: 180–190. DOI: 10.1016/j.ijimpeng.2018.06.007. [28] XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. DOI: 10.1016/j.ijimpeng.2013.04.005. [29] 黄谢平, 孔祥振, 陈祖煜, 等. 近水面、库中、库底水下爆炸荷载作用下混凝土重力坝的破坏模式对比 [J]. 土木工程学报, 2023, 56(3): 116–128. DOI: 10.15951/j.tmgcxb.21121206.HUANG X P, KONG X Z, CHEN Z Y, et al. Comparison of failure modes of concrete gravity dams by underwater explosion loads near the water free surface, the middle, and the bottom of the reservoir [J]. China Civil Engineering Journal, 2023, 56(3): 116–128. DOI: 10.15951/j.tmgcxb.21121206. [30] GEERS T L, HUNTER K S. An integrated wave-effects model for an underwater explosion bubble [J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1584–1601. DOI: 10.1121/1.1458590.