船体水下近距非接触爆炸损伤计算之两步迭代法

任凯 周洪景 杨晨

任凯, 周洪景, 杨晨. 船体水下近距非接触爆炸损伤计算之两步迭代法[J]. 爆炸与冲击, 2023, 43(4): 044201. doi: 10.11883/bzycj-2022-0116
引用本文: 任凯, 周洪景, 杨晨. 船体水下近距非接触爆炸损伤计算之两步迭代法[J]. 爆炸与冲击, 2023, 43(4): 044201. doi: 10.11883/bzycj-2022-0116
REN Kai, ZHOU Hongjing, YANG Chen. A two-step iterative method for damage calculation of a ship hullsubjected to underwater close-up non-contact explosion[J]. Explosion And Shock Waves, 2023, 43(4): 044201. doi: 10.11883/bzycj-2022-0116
Citation: REN Kai, ZHOU Hongjing, YANG Chen. A two-step iterative method for damage calculation of a ship hullsubjected to underwater close-up non-contact explosion[J]. Explosion And Shock Waves, 2023, 43(4): 044201. doi: 10.11883/bzycj-2022-0116

船体水下近距非接触爆炸损伤计算之两步迭代法

doi: 10.11883/bzycj-2022-0116
详细信息
    作者简介:

    任 凯(1979- ),男,博士,副教授,ms1201@163.com

  • 中图分类号: O383

A two-step iterative method for damage calculation of a ship hullsubjected to underwater close-up non-contact explosion

  • 摘要: 船体水下近距非接触爆炸产生的破口计算过程复杂,涉及船体板架、武器装药和爆距方位等诸多因素,工程实践中通常应用经验公式求解。基于舰船遭受定向型战斗部攻击、毁伤面近似垂直于毁伤轴和爆炸过程瞬时发生满足近似能量守恒基本条件,根据爆炸冲击波初始动能与爆炸作用区域结构塑性变形能等量传递的假设,给出了计算方法。考虑了附着加强筋的船体壳板等效厚度对抵御冲击波毁伤的影响,运用爆炸冲击波作用下船体壳板产生的极限应变超过板材动态极限应变导致壳板开裂这一基本原理,设计了两步迭代法计算流程,给出了简捷易用的迭代计算表格。针对4种典型装药当量冲击波作用下,5~20 m长度舱段,11 m以内爆炸距离,6 和8 mm这2种典型厚度船体壳板遭受爆炸冲击受损情况进行了768组数据计算。引入平面拟合方程,通过判断截平面相似度分析,给出了计算方法的适用性判据,探讨了计算参数的适用范围,以保证两步迭代法能够客观反映水下近距非接触爆炸的实际破坏效果。结合经验公式计算结果和破损舰船受损实测数据,对该方法进行了检验,实践表明:两步迭代法易于工程实践且具有较好的准确性。
  • 图  1  炸点与船舶舱室之间的位置关系

    Figure  1.  Positional relationship between explosion point and ship cabin

    图  2  水下近场非接触爆炸毁伤船体壳板基本原理

    Figure  2.  Basic principle of hull plate damaged by underwater near-field non-contact explosion

    图  3  破口花瓣开裂典型状态

    Figure  3.  typical state of broken petal cracking

    图  4  不同TNT装药当量对厚度8 mm船壳板产生的破坏作用计算结果

    Figure  4.  Calculation results of damage effect of different TNT charge equivalents on the 8-mm-thickness ship shell plate

    图  5  不同TNT装药当量对厚度6 mm船壳板产生的破坏作用计算结果

    Figure  5.  Calculation results of damage effect of different TNT charge equivalents on 6-mm-thickness ship shell plate

    图  6  TNT装药当量350 kg对不同厚度船板破坏作用计算结果平面型数据拟合方程

    Figure  6.  Calculation results of the destructive effect of TNT charge equivalent 350 kg on ship plates with different thicknesses

    表  1  部分典型炸药的相似常数计算参数[10]

    Table  1.   Calculation parameters of similarity constants of some typical explosives[10]

    炸药kpkθαpαθ
    TNT52.50.0941.13−0.18
    RS211鱼雷装药59.60.1011.17−0.23
    HLZY-1含铝炸药49.00.1321.11−0.22
    下载: 导出CSV

    表  2  水下爆炸船体破口计算表

    Table  2.   Calculation of hull break caused by underwater explosion

    序号项目物理量数值说明操作方法
    1装药量W/kg267TNT当量需要输入
    2爆炸产生的破口半径(半宽)R/m2.71计算结果,这个半宽数值对应中间完全撕裂破洞,实际破坏要比这个计算数值略小,这个结果越靠近炸点,与实际结果越接近。输入半宽值试算,结果显示在C区域
    3炸药水中爆炸相似常数KEKE/(KPa∙m)84.4经验常数,根据实际查表由式(7)计算/采用TNT装药,代入公式时乘103不输入
    4炸药水中爆炸相似常数αEαE2.04经验常数,根据实际查表由式(8)计算/采用TNT装药不输入
    5两道水密隔墙之间的半宽距离L/m8.00整个舱段长度为2L(m)按水密段实际宽度一半输入
    6船壳板原始厚度H/mm8.000直接输入不必转换成单位m按实际输入
    7船壳板等效厚度(考虑加强筋)$ \bar{h} $/m0.064按实际板厚度8倍计算不输入
    8爆距R/m3.00炸点距离舷板垂直距离按实际输入,接触爆炸可按0.01输入
    9爆炸区域冲击波初始动能EK/(kg∙m2∙s−23349689A区域:炸药爆炸冲击波初始动能计算值不输入,用与B区域结果比对
    10钢板强度σ/MPa235.00直接输入不必转换成Pa,对于Q235钢板,此数值是235 MPa,船板一般取值235~440 MPa,代入公式时乘106按实际输入
    11船壳板变形内凹陷试算角度Φ/(°)2.27从0°~90°取数值试算输入角度试算,结果显示在B区域
    12内凹陷角度转换弧度制Φ/rad0.04此处是中间转换数值不输入
    13爆破区计算作用动能EA/(kg∙m2∙s−23332283B区域:爆炸冲击波做功近似转化为船壳板塑性变形能不输入,用与A区域数值比对,直至EK=EA时止
    14动态极限应变εm/%0.2钢板的极限应变是0.2%不输入
    15计算极限应变ε/%0.2C区域:此处计算得到临界极限应变不输入
    注:*以上计算方法适用于舱室跨度大于7 m,爆距小于9 m。
    下载: 导出CSV

    表  3  典型TNT装药当量爆炸破坏10 m跨度隔舱6 mm厚度舷板的计算结果

    Table  3.   Calculation results of equivalent explosion damage of typical TNT charge to 10 m span compartment and 6 mm thick sideboard

    爆距/m典型TNT当量条件下的破口半宽/m
    350 kg267 kg240 kg170 kg
    90.920.870.810.76
    110.660.610.560.51
    下载: 导出CSV

    表  4  典型TNT装药当量爆炸破坏10 m跨度隔舱8 mm厚度舷板的计算结果

    Table  4.   Calculation results of equivalent explosion damage of typical TNT charge to 10 m span compartment and 8 mm thick sideboard

    爆距/m典型TNT当量条件下的破口半宽/m
    350 kg267 kg240 kg170 kg
    90.680.630.630.53
    110.480.430.430.39
    下载: 导出CSV

    表  5  7 m以内跨度6 mm厚度舷板隔舱典型TNT装药当量爆距1 m破坏的计算结果

    Table  5.   Calculated damage results of typical TNT charge equivalent explosive distance of 1 m with span of 6 mm and the thickness of the bulkhead compartment within 7 m

    隔舱跨度/m典型TNT当量条件下的破口半宽/m
    350 kg267 kg240 kg170 kg
    73.153.113.083.03
    62.792.762.752.71
    52.412.402.392.36
    下载: 导出CSV

    表  6  7 m以内跨度8 mm厚度舷板隔舱典型TNT装药当量爆距1 m破坏的计算结果

    Table  6.   Calculated damage results of typical TNT charge equivalent explosive distance of 1 m with span of 8 mm and the thickness of the bulkhead compartment within 7 m

    隔舱跨度/m典型TNT当量条件下的破口半宽/m
    350 kg267 kg240 kg170 kg
    73.073.012.992.9
    62.762.722.712.64
    52.422.392.382.34
    下载: 导出CSV

    表  7  运用经验公式和两步迭代法的计算结果比较

    Table  7.   Comparison of calculation results between the empirical formula and the two-step iterative method

    案例运用吉田隆经验公式计算破坏半径运用两步迭代法计算破坏半径
    罗伯茨号2.77 m2.63 m
    科尔号3.29 m(装药181 kg)/4.07 m(装药317 kg)5.07 m(装药181 kg)/5.67 m(装药317 kg)
    下载: 导出CSV
  • [1] 吉田隆. 二次世界大战初期日本海军舰船在炸弹攻击下的损伤实例分析 [J]. 舰船科学, 1990(5): 70–81.

    YOSHIDA. Damage case analysis of Japanese navy ships subjected to bomb attack in the early of the second world war [J]. Ship Science, 1990(5): 70–81.
    [2] 朱锡, 白雪飞, 黄若波, 等. 船体板架在水下接触爆炸作用下的破口试验 [J]. 中国造船, 2003, 44(1): 46–51. DOI: 10.3969/j.issn.1000-4882.2003.01.007.

    ZHU X, BAI X F, HUANG R B, et al. Crevasse experiment research of plate membrance in vessels subjected to underwater contact explosion [J]. Shipbuilding of China, 2003, 44(1): 46–51. DOI: 10.3969/j.issn.1000-4882.2003.01.007.
    [3] 朱锡, 白雪飞, 张振华. 空中接触爆炸作用下船体板架塑性动力响应及破口研究 [J]. 中国造船, 2004, 45(2): 43–50. DOI: 10.3969/j.issn.1000-4882.2004.02.006.

    ZHU X, BAI X F, ZHANG Z H. Plastic dynamic response and crevasse research of ship panels subjected to air contact explosion [J]. Shipbuilding of China, 2004, 45(2): 43–50. DOI: 10.3969/j.issn.1000-4882.2004.02.006.
    [4] 牟金磊, 朱锡, 黄晓明, 等. 水下近场非接触爆炸作用下固支方板破口计算 [J]. 振动与冲击, 2011, 30(1): 37–39, 55. DOI: 10.3969/j.issn.1000-3835.2011.01.008.

    MU J L, ZHU X, HUANG X M, et al. Crevasse computation for a clamped square plate subjected to near-field noncontact underwater explosion [J]. Journal of Vibration and Shock, 2011, 30(1): 37–39, 55. DOI: 10.3969/j.issn.1000-3835.2011.01.008.
    [5] 陈海龙, 周姝, 孙丰等. 水下接触爆炸对舰船壳板的毁伤试验效果估算方法评估 [J]. 舰船科学技术, 2013, 35(10): 33–37. DOI: 10.3404/j.issn.1672-7649.2013.10.008.

    CHEN H L, ZHOU S, SUN F, et al. Estimation on estimation method of warship shell experimental damage subjected to underwater contact explosion [J]. Ship Science and Technology, 2013, 35(10): 33–37. DOI: 10.3404/j.issn.1672-7649.2013.10.008.
    [6] DIDOSZAK J M. Parametric studies of DDG-81 ship shock trail simulation[D]. California: Naval Postgraduate School Monterey, 2004: 140–161.
    [7] JULIE A K. Feasibility and design of blast mitigation systems for naval applications using water mist fire suppression systems [D]. Cambridge, MA: Massachusetts Institute of Technology. 2004: 9–11.
    [8] BOGDAN S. The effect of an underwater explosion on a ship [J]. Scientific Journal of Polish Naval Academy (PNA), 2015, 201(2): 57–73. DOI: 10.5604/0860889X.1172074.
    [9] 李志辉, 刘辉, 李其修,等. 水下非接触爆炸作用下舰船结构损伤评估 [J]. 舰船科学技术, 2012, 34(7): 40–44. DOI: 10.3404/j.issn.1672-7649.2012.07.008.

    LI Z H, LIU H, LI Q X, et al. Research on damage evaluation of ship structure in underwater non-contact explosion [J]. Ship Science and Technology, 2012, 34(7): 40–44. DOI: 10.3404/j.issn.1672-7649.2012.07.008.
    [10] 李金河, 赵继波, 谭多望,等. 炸药水中爆炸的冲击波性能 [J]. 爆炸与冲击, 2009, 29(2): 172–176.

    LI J H, ZHAO J B, TAN D W, et al. Underwater shock wave performances of explosives [J]. Explosion and Shock Waves, 2009, 29(2): 172–176.
    [11] 宫翔飞, 刘文韬, 张树道,等. 水下爆炸近场峰值压力的数值模拟 [J]. 爆炸与冲击, 2019, 39(4): 041409. DOI: 10.11883/bzycj-2017-0262.

    GONG X F, LIU W T, ZHANG S D, et al. Numerical simulation of peak pressure in near-field underwater explosion [J]. Explosion and Shock Waves, 2019, 39(4): 041409. DOI: 10.11883/bzycj-2017-0262.
    [12] HSU C Y, LIANG C C, TENG T L, et al. Numerical study of hovercraft main hull structural response subjected to shockwave from underwater explosion[C]// JAWAID M, AZAD A K, YOUSEFI M. International Conference on Advanced Material Science and Environmental Engineering (AMSEE 2016). Netherlands: Atlantis Press, 2016: 136–139.
    [13] GEBREHIWOT S Z, REMES H, KARTTUNEN A T. A Stress concentration factor for interacting surface notch and subsurface hole [J]. Rakenteiden Mekaniikka, 2018, 51(4): 20–37.DOI. DOI: 10.23998/rm.70292.
    [14] BRADLEY P. No higher honor: saving the USS samuel B: Roberts in the persian gulf[M]. Annapolis: Naval Institute Press, 2006: 16–27.
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  464
  • HTML全文浏览量:  94
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 修回日期:  2022-08-16
  • 网络出版日期:  2022-09-09
  • 刊出日期:  2023-04-05

目录

    /

    返回文章
    返回