Experiment and prediction methods on the explosion limit of the ternary flammable gas mixture
-
摘要: 为了控制并预防原油的储存及输运过程中挥发气体造成的安全风险,在20 L球形爆炸容器内开展了由原油中挥发轻烃CH4、C3H8和C2H4构成的三元可燃混合气体的爆炸极限实验,提出并验证了基于Le Chatelier定律及Chemkin模拟的一维层流预混火焰模型预测三元可燃混合气体爆炸极限的方法。结果表明,三元可燃混合气体爆炸极限始终位于3种纯组分的爆炸极限内,随着某一纯组分增加呈现出接近其爆炸极限的趋势。3种纯组分对爆炸上限的影响要强于对爆炸下限的影响,其中C2H4对三元可燃混合气体爆炸上限影响尤为显著。两种预测方法的预测结果均与实验规律性一致。Le Chatelier定律预测混合气体爆炸下限较准确,但对爆炸上限的预测随着C2H4的增加偏差增大,修正后偏差明显减小;Chemkin预测爆炸下限虽存在一定偏差,但在实验偏差的允许范围内,可作为一种预测三元可燃混合气体爆炸下限的新方法。
-
关键词:
- 三元可燃混合气体 /
- 爆炸极限 /
- Chemkin /
- Le Chatelier定律
Abstract: In order to control and prevent the safety risks caused by volatile gases during the storage and transportation of crude oil, the explosion limit of the ternary flammable gas mixture composed of volatile light hydrocarbons including CH4, C3H8 and C2H4 in crude oil was experimentally investigated in a 20 L spherical explosive device. The experiment was carried out at 20 °C and 0.1 MPa, and the method of partial pressure was used to distribute the gases. Taking the rise of pressure over 5% as the criterion for explosion, each group of the experiments was repeated three times. Methods for predicting the explosion limit of the ternary flammable gas mixture based on Le Chatelier’s law and the model of one-dimensional laminar premixed flame in Chemkin are proposed, and the reliability of these two methods is verified by the experiment. The results show that the explosion limit of the ternary flammable gas mixture is always within the explosion limit of these three pure components, which tends to approach the explosion limit of a certain pure component with its increase. The influence of the three pure components on the upper explosion limit is more pronounced than on the lower explosion limit, and the effect of C2H4 on the upper explosion limit is particularly obvious compared with the other two pure components. Both methods of prediction are highly consistent with the experimental regularity. The prediction of the lower explosion limit by Le Chatelier’s law is relatively accurate. However, the deviation of the upper explosion limit increases with the raise of C2H4 due to its special characteristics of combustion, and the deviation decreases significantly after the correction of Le Chatelier’s law. Although the prediction of the lower explosion limit by Chemkin, which predicts the lower explosion limit by calculating the laminar burning velocity near the lower explosion limit, desplays a certain deviation, it is within the allowable range of experimental deviations. Therefore, it can be used as a new method to predict the lower explosion limit of the ternary flammable gas mixtures, but the model of one-dimensional laminar premixed flame is not suitable for the prediction on the upper explosion limit.-
Key words:
- ternary flammable gas mixture /
- explosion limit /
- Chemkin /
- Le Chatelier’s law
-
表 1 气体爆炸极限
Table 1. The explosion limit of gases
-
[1] QIAN H, ZHEN Y L, ZHE Z. Study on evaluation of explosion effects of gas injection wells [J]. Advanced Materials Research, 2014, 1051: 962–966. DOI: 10.4028/www.scientific.net/AMR.1051.962. [2] 王开伟. 原油码头油气回收系统分析与研究[D]. 杭州: 浙江大学, 2020: 1–6.WANG K W. Studies on the oil vapor recovery system of crude oil piers [D]. Hangzhou: Zhejiang University, 2020: 1-6. [3] CASHDOLLAR K L, ZLOCHOWER I A, GREEN G M, et al. Flammability of methane, propane, and hydrogen gases [J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3/4/5): 327–340. DOI: 10.1016/s0950-4230(99)00037-6. [4] 喻健良, 姚福桐, 于小哲, 等. 高温和高压对乙烷在氧气中爆炸极限影响的实验研究 [J]. 爆炸与冲击, 2019, 39(12): 17–23. DOI: 10.11883/bzycj-2018-0381.YU J L, YAO F T, YU X Z, et al. Experimental study on the influence of high temperature and high pressure on the upper limit of explosion of ethane in oxygen [J]. Explosion and Shock Waves, 2019, 39(12): 17–23. DOI: 10.11883/bzycj-2018-0381. [5] VAN DEN SCHOOR F, VERPLAETSEN F. The upper explosion limit of lower alkanes and alkenes in air at elevated pressures and temperatures [J]. Journal of Hazardous Materials, 2006, 128(1): 1–9. DOI: 10.1016/j.jhazmat.2005.06.043. [6] LI R Z, LIU Z C, HAN Y Q, et al. Extended adiabatic flame temperature method for lower flammability limits prediction of fuel-air-diluent mixture by nonstoichiometric equation and nitrogen equivalent coefficients [J]. Energy and Fuels, 2017, 31(1): 351–361. DOI: 10.1021/acs.energyfuels.6b02459. [7] DUPONT L, ACCORSI A. Explosion characteristics of synthesised biogas at various temperatures [J]. Journal of Hazardous Materials, 2006, 136(3): 520–525. DOI: 10.1016/j.jhazmat.2005.11.105. [8] LUO Z M, SU B, WANG T, et al. Effects of propane on the flammability limits and chemical kinetics of methane-air explosions [J]. Combustion Science and Technology, 2020, 192(9): 1785–1801. DOI: 10.1080/00102202.2019.1625041. [9] 任常兴, 张琰, 赵文胜, 等. 混合气体爆炸性现场测试实验研究 [J]. 中国安全生产科学技术, 2019, 15(1): 20–25. DOI: 10.11731/j.issn.1673-193x.2019.01.003.REN C X, ZHANG Y, ZHAO W S, et al. Experimental study on field test for explosiveness of gas mixture [J]. Journal of Safety Science and Technology, 2019, 15(1): 20–25. DOI: 10.11731/j.issn.1673-193x.2019.01.003. [10] TONG M M, WU G Q, HAO J F, et al. Explosion limits for combustible gases [J]. Mining Science and Technology, 2009, 19(2): 182–184. DOI: 10.3969/j.issn.2095-2686.2009.02.009. [11] KONDO S, TAKIZAWA K, TAKAHASHI A, et al. A study on flammability limits of fuel mixtures [J]. Journal of Hazardous Materials, 2008, 155(3): 440–448. DOI: 10.1016/j.jhazmat.2007.11.085. [12] MASHUGA C V, CROWL D A. Flammability zone prediction using calculated adiabatic flame temperatures [J]. Process Safety Progress, 1999, 18(3): 127–134. DOI: 10.1002/prs.680180303. [13] HU X, YU Q, SUN N, et al. Experimental study of flammability limits of oxy-methane mixture and calculation based on thermal theory [J]. International Journal of Hydrogen Energy, 2014, 39(17): 9527–9533. DOI: 10.1016/j.ijhydene.2014.03.202. [14] Determination of explosion limits of gases and vapours: BS EN 1839-2017 [S]. Brussels: European Committee for Standardisation, 2017. [15] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 空气中可燃气体爆炸极限测定方法: GB/T 12474-2008 [S]. 2008. [16] 李刚, 李玉峰, 苑春苗. 高温和高压下CBM的爆炸极限 [J]. 东北大学学报(自然科学版), 2012, 33(4): 580–583. DOI: 10.12068/j.issn.1005-3026.2012.04.030.LI G, LI Y F, YUAN C M. Explosion limits of CBM at elevated pressure and temperature [J]. Journal of Northeastern University (Natural Science), 2012, 33(4): 580–583. DOI: 10.12068/j.issn.1005-3026.2012.04.030. [17] 高娜, 张延松, 胡毅亭. 温度、压力对甲烷-空气混合物爆炸极限耦合影响的实验研究 [J]. 爆炸与冲击, 2017, 37(3): 453–458. DOI: 10.11883/1001-1455(2017)03-0453-06.GAO N, ZHANG Y S, HU Y T. Experimental study on methane-air mixtures explosion limits at normal and elevated initial temperatures and pressures [J]. Explosion and Shock Waves, 2017, 37(3): 453–458. DOI: 10.11883/1001-1455(2017)03-0453-06. [18] TAKAHASHI A, URANO Y, TOKUHASHI K, et al. Effect of vessel size and shape on experimental flammability limits of gases [J]. Journal of Hazardous Materials, 2003, 105(1-3): 27–37. DOI: 10.1016/j.jhazmat.2003.07.002. [19] ZHAO F, ROGERS W J, MANNAN M S. Experimental measurement and numerical analysis of binary hydrocarbon mixture flammability limits [J]. Process Safety and Environmental Protection, 2009, 87(2): 94–104. DOI: 10.1016/j.psep.2008.06.003. [20] BERNARD L, GUENTHER V E. 燃气燃烧与瓦斯爆炸[M]. 3版. 王方, 译. 北京: 中国建筑工业出版社, 2010: 604. [21] MASCARENHAS V J, WEBER C N, WESTMORELAND P R. Estimating flammability limits through predicting non-adiabatic laminar flame [J]. Proceedings of the Combustion Institute, 2021, 38(3): 4673–4681. DOI: 10.1016/j.proci.2020.06.026. [22] LUO Z M, LIANG H, WANG T, et al. Evaluating the effect of multiple flammable gases on the flammability limit of CH4: experimental study and theoretical calculation [J]. Process Safety and Environmental Protection, 2021, 146: 369–376. DOI: 10.1016/j.psep.2020.09.023. [23] JAIMES D J. Determination of lower flammability limits of mixtures of air and gaseous renewable fuels at elevated temperatures and pressures [D]. Irvine: University of California, 2017: 62-64. [24] WANG T, LUO Z M, WEN H, et al. The explosion enhancement of methane-air mixtures by ethylene in a confined chamber [J]. Energy, 2021, 214. DOI: 10.1016/j.energy.2020.119042. [25] DAVIS S G, LAW C K. Determination of and fuel structure effects on laminar flame speeds of C-1 to C-8 hydrocarbons [J]. Combustion Science and Technology, 1998, 140(1-6): 427–449. DOI: 10.1080/00102209808915781. [26] 罗振敏, 杨勇, 程方明, 等. N2和CO2惰化丙烯爆炸极限参数实验研究 [J]. 化工学报, 2020, 71(4): 1922–1928. DOI: 10.11949/0438-1157.20191167.LUO Z M, YANG Y, CHENG F M, et al. Experimental study on explosion limits parameters of propylene with dilution ofnitrogen and carbon dioxide [J]. CIESC Journal, 2020, 71(4): 1922–1928. DOI: 10.11949/0438-1157.20191167. [27] KONDO S, TAKIZAWA K, TAKAHASHI A, et al. Extended Le Chatelier’s formula for carbon dioxide dilution effect on flammability limits [J]. Journal of Hazardous Materials, 2006, 138(1): 1–8. DOI: 10.1016/j.jhazmat.2006.05.035.