An improved material model for numerical simulation of projectile perforating concrete
-
摘要: 研究混凝土结构在冲击载荷下的力学特性对武器以及防护结构的设计和评估具有重要意义,而合适的材料模型可以更准确地预测混凝土结构的力学行为和破坏模式。因此,本文中提出了一种改进的混凝土塑性损伤材料模型来描述其在冲击载荷下的力学响应。该改进模型考虑了压力-体积应变关系、应变率效应、洛德角效应和塑性损伤累积对混凝土材料力学特性的影响,并引入了一个与损伤相关的硬化/软化函数来描述压缩状态下的应变硬化和软化行为。随后,通过对3个独立的强度面进行线性插值得到了该改进模型的破坏强度面,并采用部分关联流动法则考虑了混凝土材料的体积膨胀特性。最后,开展了单个单元在不同加载条件下和弹体贯穿钢筋混凝土靶的数值模拟,验证了该改进模型的可行性、准确性以及预测性能提升。Abstract: Investigating the mechanical property of concrete structures subjected to impact loading has great significance on the design and evaluation of weapons and protective structures, while appropriate material models can more accurately predict the mechanical behavior and damage mode of concrete structures. In this paper, an improved damage-plasticity material model for concrete was proposed to describe its mechanical response subjected to impact loading. The equation of state, including elastic stage, transition stage and compacted stage, is employed to describe the pressure vs. volume strain relationship. The strain rate effect is considered by combining the radial enhancement method and the semi-empirical equation of dynamic increase factor. A unified hardening/softening function related to the shear damage caused by microcracking and the compacted damage caused by pore collapse are introduced to describe the nonlinear ascend and descend of compressive strain-stress curves in plastic stage, while an exponential function related to the tensile damage is employed to reflect the strain softening behavior under tension. Based on the current extent of damage, the failure strength surface of this improved material model is determined through linearly interpolation between the maximum and yield strength surfaces or the maximum and residual strength surfaces, and the influence of third deviatoric stress invariant on the failure strength surface is considered for describing the reduction of shear strength during the transition from high pressure to low pressure. The fractionally associated flow rule is employed to consider the volumetric dilatancy of concrete materials under confining pressure. Then, the availability and accuracy of this improved material model are verified by the numerical simulations of single element under different loading conditions, and its performance improvement is discussed by comparing with the HJC model, RHT model, Kong-Fang model and empirical equation. Finally, the numerical simulations of projectile perforating reinforced concrete slab are conducted to further validate the feasibility and accuracy of this improved material model under impact loading, from which numerical results indicate that the damage mode and residual velocity predicted by this improved material model are closer to experimental results than HJC model.
-
Key words:
- concrete /
- impact loading /
- material model /
- hardening/softening function /
- plastic damage accumulation
-
表 1 改进混凝土模型材料参数
Table 1. Material parameters of improved concrete model
基本力学参数 强度面 应变率效应 状态方程 损伤累积 参数 数值 参数 数值 参数 数值 参数 数值 参数 数值 ρ/(g·cm−3) 2440 fc/MPa 48 Wx 1.6 pcrush/MPa 16 A1 5.98 ν 0.2 ft/MPa 4 Wy 5.5 µcrush 0.001 A2 1.0 G/GPa 14.86 B1 1.59 Fm 10 plock/MPa 800 Dm 0.035 N1 0.90 S 0.8 µlock 0.1 εfrac 0.01 B2 0.96 ˙ε0/s−1 1.0 K1/GPa 85 N2 0.86 K2/GPa −171 B3 1.94 K3/GPa 208 N3 0.83 表 2 Kong-Fang模型材料参数
Table 2. Material parameters of Kong-Fang model
fc/MPa E/GPa G/GPa K/GPa ν T/MPa a1 a2/MPa−1 ω α d1 d2 d3 εfrac 48 32.8 13.67 18.22 0.2 4 0.5876 0.025/fc 0.5 1 0.04 1.5 0.1 0.01 表 3 弹体和钢筋材料参数
Table 3. Material parameters of projectile and reinforcement
材料 密度/(g·cm−3) 杨氏模量/GPa 泊松比 屈服强度/MPa 失效参数 弹体 8.0 200 0.3 − − 钢筋 7.85 210 0.3 235 0.8 表 4 弹体剩余速度
Table 4. Residual velocities of projectile
冲击速度/
(m·s−1)实验/
(m·s−1)数值模拟/(m·s−1) 误差/% HJC模型 改进模型 HJC模型 改进模型 1058 947 991.2 961.0 4.7 1.5 749 615 649.4 634.6 5.6 3.2 606 449 490.1 475.2 9.2 5.8 434 214 243.8 235.1 13.9 9.9 381 136 164.3 157.1 20.8 15.5 -
[1] 王可慧, 周刚, 李明, 等. 弹体高速侵彻钢筋混凝土靶试验研究 [J]. 爆炸与冲击, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.WANG K H, ZHOU G, LI M, et al. Experimental research on the mechanism of a high-velocity projectile penetrating into a reinforced concrete target [J]. Explosion and Shock Waves, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463. [2] XU X Z, MA T B, NING J G. Failure analytical model of reinforced concrete slab under impact loading [J]. Construction and Building Materials, 2019, 223: 679–691. DOI: 10.1016/j.conbuildmat.2019.07.008. [3] ZHANG J, CHEN W S, HAO H, et al. Performance of concrete targets mixed with coarse aggregates against rigid projectile impact [J]. International Journal of Impact Engineering, 2020, 141: 103565. DOI: 10.1016/j.ijimpeng.2020.103565. [4] 马天宝, 武珺, 宁建国. 弹体高速侵彻钢筋混凝土的实验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(10): 103301. DOI: 10.11883/bzycj-2018-0275.MA T B, WU J, NING J G. Experimental and numerical study on projectiles’ high-velocity penetration into reinforced concrete [J]. Explosion and Shock Waves, 2019, 39(10): 103301. DOI: 10.11883/bzycj-2018-0275. [5] TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010. [6] CUI J, HAO H, SHI Y C. Discussion on the suitability of concrete constitutive models for high-rate response predictions of RC structures [J]. International Journal of Impact Engineering, 2017, 106: 202–216. DOI: 10.1016/j.ijimpeng.2017.04.003. [7] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//Proceeding of 14th International Symposium on Ballistics. Quebec, Canada, 1993. [8] 王志亮, 毕程程, 李鸿儒. 混凝土爆破损伤的SPH-FEM耦合法数值模拟 [J]. 爆炸与冲击, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209.WANG Z L, BI C C, LI H R. Numerical simulation of blasting damage in concrete using a coupled SPH-FEM algorithm [J]. Explosion and Shock Waves, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209. [9] DONG H, WU H J, LIU Z H, et al. Penetration characteristics of pyramidal projectile into concrete target [J]. International Journal of Impact Engineering, 2020, 143: 103583. DOI: 10.1016/j.ijimpeng.2020.103583. [10] KUMAR V, KARTIK K V, IQBAL M A. Experimental and numerical investigation of reinforced concrete slabs under blast loading [J]. Engineering Structures, 2020, 206: 110125. DOI: 10.1016/j.engstruct.2019.110125. [11] WAN W Z, YANG J, XU G J, et al. Determination and evaluation of Holmquist-Johnson-Cook constitutive model parameters for ultra-high-performance concrete with steel fibers [J]. International Journal of Impact Engineering, 2021, 156: 103966. DOI: 10.1016/j.ijimpeng.2021.103966. [12] IQBAL M A, RAJPUT A, GUPTA N K. Performance of prestressed concrete targets against projectile impact [J]. International Journal of Impact Engineering, 2017, 110: 15–25. DOI: 10.1016/j.ijimpeng.2016.11.015. [13] 戴湘晖, 段建, 周刚, 等. 低速弹体贯穿钢筋混凝土多层靶的破坏特性 [J]. 兵工学报, 2018, 39(4): 698–706. DOI: 10.3969/j.issn.1000-1093.2018.04.009.DAI X H, DUAN J, ZHOU G, et al. Damage effect of low velocity projectile perforating into multi-layered reinforced concrete slabs [J]. Acta Armamentarii, 2018, 39(4): 698–706. DOI: 10.3969/j.issn.1000-1093.2018.04.009. [14] POLANCO-LORIA M, HOPPERSTAD O S, BØRVIK T, et al. Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model [J]. International Journal of Impact Engineering, 2008, 35(5): 290–303. DOI: 10.1016/j.ijimpeng.2007.03.001. [15] LIU Y, MA A E, HUANG F L. Numerical simulations of oblique-angle penetration by deformable projectiles into concrete targets [J]. International Journal of Impact Engineering, 2009, 36(3): 438–446. DOI: 10.1016/j.ijimpeng.2008.03.006. [16] ISLAM M J, SWADDIWUDHIPONG S, LIU Z S. Penetration of concrete targets using a modified Holmquist-Johnson-Cook material model [J]. International Journal of Computational Methods, 2013, 09(04): 1250056. DOI: 10.1142/S0219876212500569. [17] KONG X, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: 10.1016/j.ijimpeng.2016.04.014. [18] LIU K, WU C Q, LI X B, et al. A modified HJC model for improved dynamic response of brittle materials under blasting loads [J]. Computers and Geotechnics, 2020, 123: 103584. DOI: 10.1016/j.compgeo.2020.103584. [19] DU Y, WEI J, LIU K, et al. Research on dynamic constitutive model of ultra-high performance fiber-reinforced concrete [J]. Construction and Building Materials, 2020, 234: 117386. DOI: 10.1016/j.conbuildmat.2019.117386. [20] TAYLOR L M, CHEN E, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. DOI: 10.1016/0045-7825(86)90057-5. [21] LEPPÄNEN J. Concrete subjected to projectile and fragment impacts: modelling of crack softening and strain rate dependency in tension [J]. International Journal of Impact Engineering, 2006, 32(11): 1828–1841. DOI: 10.1016/j.ijimpeng.2005.06.005. [22] TU Z G, LU Y. Modifications of RHT material model for improved numerical simulation of dynamic response of concrete [J]. International Journal of Impact Engineering, 2010, 37(10): 1072–1082. DOI: 10.1016/j.ijimpeng.2010.04.004. [23] HAO H, ZHOU X Q. Concrete material model for high rate dynamic analysis[C]//7th International Conference on Shock and Impact Loans on Structures. Beijing, 2007. [24] HARTMANN T, PIETZSCH A, GEBBEKEN N. A hydrocode material model for concrete [J]. International Journal of Protective Structures, 2010, 1: 443–468. DOI: 10.1260/2041-4196.1.4.443. [25] XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. DOI: 10.1016/j.ijimpeng.2016.01.003. [26] GOMATHI K A, RAJAGOPAL A, REDDY K S S, et al. Plasticity based material model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2020, 142: 103581. DOI: 10.1016/j.ijimpeng.2020.103581. [27] YANG L, WANG G S, ZHAO G F, et al. A rate and pressure-dependent damage-plasticity constitutive model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104394. DOI: 10.1016/j.ijrmms.2020.104394. [28] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7. [29] RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]//Proceedings of the 9th International Symposium on the Effect of Munitions with Structures, Strausberg. Berlin, Germany, 1999. [30] KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006. [31] XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. DOI: 10.1016/j.ijimpeng.2013.04.005. [32] WANG G S, LU D C, DU X L, et al. A true 3D frictional hardening elastoplastic constitutive model of concrete based on a unified hardening/softening function [J]. Journal of the Mechanics and Physics of Solids, 2018, 119: 250–273. DOI: 10.1016/j.jmps.2018.06.019. [33] WEERHEIJM J, VAN DOORMAAL J C A M. Tensile failure of concrete at high loading rates: new test data on strength and fracture energy from instrumented spalling tests [J]. International Journal of Impact Engineering, 2007, 34(3): 609–626. DOI: 10.1016/j.ijimpeng.2006.01.005. [34] ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633. [35] WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815. [36] ATTARD M M, SETUNGE S. Stress-strain relationship of confined and unconfined concrete [J]. ACI Materials Journal, 1996, 93(5): 432–442. [37] SAMANI A K, ATTARD M M. A stress-strain model for uniaxial and confined concrete under compression [J]. Engineering Structures, 2012, 41: 335–349. DOI: 10.1016/j.engstruct.2012.03.027. [38] HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. DOI: 10.1016/0734-743X(92)90282-X. 期刊类型引用(1)
1. 杜烨,姜春兰,李强,周炜智. 含能射流侵彻混凝土径向扩孔理论模型研究. 弹箭与制导学报. 2024(02): 21-29 . 百度学术
其他类型引用(2)
-