Dynamic response of nacre-like structure under explosion load
-
摘要: 贝壳珍珠层是一种具有高强度和高韧性的天然材料,这种优异的性能主要来源于多尺度、多层级的“砖泥”结构。本文受贝壳特殊结构的启发,构建了仿贝壳砖泥结构的有限元模型,并进行了爆炸实验。通过实验发现:在爆炸冲量为0.047 N·s时,试件发生灾难性破坏,使得中心处发生掉落,且伴随着试件夹持端的剪切破坏,与数值模拟结果具有良好的一致性。在实验基础上,对仿贝壳砖泥结构在爆炸载荷下的动态响应进行了数值模拟。研究发现,在爆炸载荷下仿贝壳砖泥结构会产生五种不同的破坏模式,包括:Ⅰ,结构整体无损伤;Ⅱ,结构前表面无明显破坏,后表面发生破坏;Ⅲ,结构发生掉落型贯穿破坏,夹持端无剪切破坏;Ⅳ,结构发生小块掉落型贯穿破坏,夹持端发生剪切破坏;Ⅴ,结构发生大块掉落型贯穿破坏,夹持端发生剪切破坏。并且给出了不同破坏模式的临界阈值,单层砖泥结构的破坏阈值为0.019 N·s,五层砖泥结构的破坏阈值为0.047 N·s,当冲量超过破坏阈值时,试件发生灾难性破坏。研究分析了堆叠层数对仿生结构的力学响应,在同一冲量下,随着层数的增加,结构的破坏模式发生改变,由贯穿型破坏逐渐变为仅发生一定塑性变形。随着层数增加,结构的损伤阈值增加。最后提出仿贝壳砖泥结构的增韧机理主要有裂纹偏转和微裂纹。Abstract: Shell nacre is a nature material with high strength and toughness, and the excellent performance is mainly derived from multi-scale, multi-hierarchy with “brick and mortar” structure. Inspired by the special structure of shell, a finite element model of nacre-like brick and mortar structures was created and the explosion experiment was carried out. In the experiment, the sample was destroyed catastrophically at the explosion impulse of 0.047 N·s, with the fall of the center. Additionally, shear failure existed around the clamping end of the specimen, which is in good agreement with the numerical simulation results. On this basis, the dynamic response of nacre-like brick and mortar models under explosive load was explored. Five different failure modes were analyzed, including: mode Ⅰ, inelastic deformation without damage; mode Ⅱ, partial damage with damage in the back surface; mode Ⅲ, through-wall failure in the center of specimen; mode Ⅳ, through-wall failure in the center of specimen and shear failure at the clamping end; mode Ⅴ, devastating damage with large drop through in the center and shear failure. The thresholds critical of different failure modes were obtained based on the simulation results. The threshold value for the one-layer brick and mortar structure was 0.019 N·s, and this value increased to 0.047 N·s for the five-layer brick and mortar structure. When the impulse exceeds the threshold value, catastrophic damage occurrs. The effects of the number of stacked layers on the response of the brick and mortar models were analyzed. With the increase of the number of stacked layers, the failure mode of the structure changes from devastating damage to inelastic deformation. Additionally, the threshold value for brick and mortar structure under explosion load increased with the increase of the number of stacked layers. Finally, the toughening mechanism of nacre-like brick and mortar structure was given, including crack deflection and microcrack.
-
表 1 不同层级结构在不同药量下的动态响应
Table 1. Dynamic response of structure with different layers to different explosive charges
冲量/(N·s) 1 layer 2 layers 3 layers 4 layers 5 layers 0.019 Ⅴ Ⅳ Ⅲ Ⅱ Ⅰ 0.030 Ⅴ Ⅴ Ⅳ Ⅲ Ⅱ 0.035 − Ⅴ Ⅴ Ⅳ Ⅲ 0.039 − − Ⅴ Ⅴ Ⅳ 0.047 − − − Ⅴ Ⅴ -
[1] LIU Z Q, MEYERS M A, ZHANG Z F, et al. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications [J]. Progress in Materials Science, 2017, 88: 467–498. DOI: 10.1016/j.pmatsci.2017.04.013. [2] JIA Z A, YU Y, WANG L F. Learning from nature: use material architecture to break the performance tradeoffs [J]. Materials & Design, 2019, 168: 107650. DOI: 10.1016/j.matdes.2019.107650. [3] HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications [J]. Composites Part B: Engineering, 2020, 181: 107496. DOI: 10.1016/j.compositesb.2019.107496. [4] JI B H, GAO H J. Mechanical properties of nanostructure of biological materials [J]. Journal of the Mechanics and Physics of Solids, 2004, 52(9): 1963–1990. DOI: 10.1016/j.jmps.2004.03.006. [5] CHEN P Y, LIN A Y M, LIN Y S, et al. Structure and mechanical properties of selected biological materials [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(3): 208–226. DOI: 10.1016/j.jmbbm.2008.02.003. [6] 侯东芳, 周根树, 郑茂盛. 贝壳珍珠层断裂过程的原位观察及其增韧机制分析 [J]. 材料科学与工程学报, 2007, 25(3): 388–391. DOI: 10.3969/j.issn.1673-2812.2007.03.016.HOU D F, ZHOU G S, ZHENG M S. In situ SEM observation of crack propagation and analysis of the toughening mechanism in nacre [J]. Journal of Materials Science & Engineering, 2007, 25(3): 388–391. DOI: 10.3969/j.issn.1673-2812.2007.03.016. [7] 侯东芳, 周根树, 郑茂盛. 不同取向贝壳材料力学性能的压痕法研究 [J]. 三峡大学学报(自然科学版), 2006, 28(3): 246–249. DOI: 10.3969/j.issn.1672-948X.2006.03.016.HOU D F, ZHOU G S, ZHENG M S. Research of mechanical proprieties of nacre using indentation method [J]. Journal of China Three Gorges University (Natural Sciences), 2006, 28(3): 246–249. DOI: 10.3969/j.issn.1672-948X.2006.03.016. [8] 梁艳, 赵杰, 王来, 等. 贝壳的力学性能和增韧机制 [J]. 机械强度, 2007, 29(3): 507–511. DOI: 10.3321/j.issn:1001-9669.2007.03.031.LIANG Y, ZHAO J, WANG L, et al. Mechanical properties and toughening mechanisms of mollusk shell [J]. Journal of Mechanical Strength, 2007, 29(3): 507–511. DOI: 10.3321/j.issn:1001-9669.2007.03.031. [9] YIN Z, HANNARD F, BARTHELAT F. Impact-resistant nacre-like transparent materials [J]. Science, 2019, 364(6447): 1260–1263. DOI: 10.1126/science.aaw8988. [10] NGUYEN-VAN V, WICKRAMASINGHE S, GHAZLAN A, et al. Uniaxial and biaxial bioinspired interlocking composite panels subjected to dynamic loadings [J]. Thin-Walled Structures, 2020, 157: 107023. DOI: 10.1016/j.tws.2020.107023. [11] JIA H M, LI Y C, LUAN Y B, et al. Bioinspired Nacre-like GO-based bulk with easy scale-up process and outstanding mechanical properties [J]. Composites Part A: Applied Science and Manufacturing, 2020, 132: 105829. DOI: 10.1016/j.compositesa.2020.105829. [12] TAN G Q, YU Q, LIU Z Q, et al. Compression fatigue properties and damage mechanisms of a bioinspired nacre-like ceramic-polymer composite [J]. Scripta Materialia, 2021, 203: 114089. DOI: 10.1016/J.SCRIPTAMAT.2021.114089. [13] 武晓东, 张海广, 王瑜, 等. 冲击载荷下仿贝壳珍珠层Voronoi结构的动态力学响应 [J]. 高压物理学报, 2020, 34(6): 064201. DOI: 10.11858/gywlxb.20200559.WU X D, ZHANG H G, WANG Y, et al. Dynamic responses of nacre-like Voronoi structure under impact loading [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064201. DOI: 10.11858/gywlxb.20200559. [14] LIU F, LI T T, JIA Z A, et al. Combination of stiffness, strength, and toughness in 3D printed interlocking nacre-like composites [J]. Extreme Mechanics Letters, 2020, 35: 100621. DOI: 10.1016/j.eml.2019.100621. [15] 马骁勇, 梁海弋, 王联凤. 三维打印贝壳仿生结构的力学性能 [J]. 科学通报, 2016, 61(7): 728–734. DOI: 10.1360/N972015-00263.MA X Y, LIANG H Y, WANG L F. Multi-materials 3D printing application of shell biomimetic structure [J]. Chinese Science Bulletin, 2016, 61(7): 728–734. DOI: 10.1360/N972015-00263. [16] 刘英志, 雷建银, 王志华. 冲击载荷下仿贝壳砖泥结构的动态响应 [J]. 高压物理学报, 2022, 36(1): 014202. DOI: 10.11858/gywlxb.20210790.LIU Y Z, LEI J Y, WANG Z H. Dynamic response of narce-like brick and mortar structure under impact load [J]. Journal of High Pressure Physics, 2022, 36(1): 014202. DOI: 10.11858/gywlxb.20210790. [17] GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites [J]. Advanced Materials, 2017, 29(28): 1700060. DOI: 10.1002/adma.201700060. [18] JIA Z A, YU Y, HOU S Y, et al. Biomimetic architected materials with improved dynamic performance [J]. Journal of the Mechanics and Physics of Solids, 2019, 125: 178–197. DOI: 10.1016/j.jmps.2018.12.015. [19] KO K, JIN S, LEE S E, et al. Bio-inspired bimaterial composites patterned using three-dimensional printing [J]. Composites Part B: Engineering, 2019, 165: 594–603. DOI: 10.1016/j.compositesb.2019.02.008. [20] Livermore Software Technology Corporation. LS-DYNA keyword user’s manual [R]. Livermore: Livermore Software Technology Corporation, 2007. [21] 亨利奇. 爆炸动力学及其应用 [M]. 熊建国, 译. 北京: 科学出版社, 1987: 124–131.HENRYCH J. The dynamics of explosion and its use [M]. XIONG J G, trans. Beijing: Science Press, 1987: 124–131. [22] 贾贤. 天然生物材料及其仿生工程材料 [M]. 北京: 化学工业出版社, 2007: 26–32.