爆炸载荷下仿贝壳结构的动态响应

李志洋 雷建银 刘志芳

李志洋, 雷建银, 刘志芳. 爆炸载荷下仿贝壳结构的动态响应[J]. 爆炸与冲击, 2022, 42(8): 083101. doi: 10.11883/bzycj-2022-0145
引用本文: 李志洋, 雷建银, 刘志芳. 爆炸载荷下仿贝壳结构的动态响应[J]. 爆炸与冲击, 2022, 42(8): 083101. doi: 10.11883/bzycj-2022-0145
LI Zhiyang, LEI Jianyin, LIU Zhifang. Dynamic response of nacre-like structure under explosion load[J]. Explosion And Shock Waves, 2022, 42(8): 083101. doi: 10.11883/bzycj-2022-0145
Citation: LI Zhiyang, LEI Jianyin, LIU Zhifang. Dynamic response of nacre-like structure under explosion load[J]. Explosion And Shock Waves, 2022, 42(8): 083101. doi: 10.11883/bzycj-2022-0145

爆炸载荷下仿贝壳结构的动态响应

doi: 10.11883/bzycj-2022-0145
基金项目: 国家自然科学基金(11902215)
详细信息
    作者简介:

    李志洋(1996- ),男,硕士, lizhiyang365@163.com

    通讯作者:

    雷建银(1989- ),男,博士, leijianyin@tyut.edu.cn

  • 中图分类号: O342

Dynamic response of nacre-like structure under explosion load

  • 摘要: 贝壳珍珠层是一种具有高强度和高韧性的天然材料,这种优异的性能主要来源于多尺度、多层级的“砖泥”结构。本文受贝壳特殊结构的启发,构建了仿贝壳砖泥结构的有限元模型,并进行了爆炸实验。通过实验发现:在爆炸冲量为0.047 N·s时,试件发生灾难性破坏,使得中心处发生掉落,且伴随着试件夹持端的剪切破坏,与数值模拟结果具有良好的一致性。在实验基础上,对仿贝壳砖泥结构在爆炸载荷下的动态响应进行了数值模拟。研究发现,在爆炸载荷下仿贝壳砖泥结构会产生五种不同的破坏模式,包括:Ⅰ,结构整体无损伤;Ⅱ,结构前表面无明显破坏,后表面发生破坏;Ⅲ,结构发生掉落型贯穿破坏,夹持端无剪切破坏;Ⅳ,结构发生小块掉落型贯穿破坏,夹持端发生剪切破坏;Ⅴ,结构发生大块掉落型贯穿破坏,夹持端发生剪切破坏。并且给出了不同破坏模式的临界阈值,单层砖泥结构的破坏阈值为0.019 N·s,五层砖泥结构的破坏阈值为0.047 N·s,当冲量超过破坏阈值时,试件发生灾难性破坏。研究分析了堆叠层数对仿生结构的力学响应,在同一冲量下,随着层数的增加,结构的破坏模式发生改变,由贯穿型破坏逐渐变为仅发生一定塑性变形。随着层数增加,结构的损伤阈值增加。最后提出仿贝壳砖泥结构的增韧机理主要有裂纹偏转和微裂纹。
  • 图  1  仿贝壳砖泥结构的单层和多层胞元建模

    Figure  1.  Single-layer and multi-layer cell construction process of nacre-like brick and mortar structure

    图  2  仿贝壳砖泥结构整体建模

    Figure  2.  Overall model building processes of nacre-like bricks and mortar structures

    图  3  五层仿贝壳砖泥结构实验样品

    Figure  3.  Front view of the five-layer nacre-like brick and mortar structure experimental piece

    图  4  爆炸实验装置

    Figure  4.  Explosion experimental device

    图  5  有限元模型

    Figure  5.  Diagram of FE model

    图  6  试验与数值模拟结果图

    Figure  6.  Test and numerical simulation results

    图  7  冲击波作用能量时程

    Figure  7.  History of shock wave energy

    图  8  失效模式Ⅰ,非弹性形变

    Figure  8.  Failure mode Ⅰ, inelastic deformation

    图  9  失效模式Ⅱ,局部损伤

    Figure  9.  Failure mode Ⅱ, partial damage

    图  10  失效模式Ⅲ,贯穿损伤

    Figure  10.  Failure mode Ⅲ, through-wall damage

    图  11  失效模式Ⅳ,贯穿及剪切损伤

    Figure  11.  Failure mode Ⅳ, through-wall and shear damage

    图  12  失效模式Ⅴ,破环式损伤

    Figure  12.  Failure mode Ⅴ, devastating damage

    图  13  五层结构在冲量0.030 N·s下的有效应力分布

    Figure  13.  Distribution of effective stress of five-layer structure under impulse of 0.030 N·s

    图  14  五层结构在冲量0.047 N·s下的有效应力分布

    Figure  14.  Distribution of effective stress of five-layer structure under impulse of 0.047 N·s

    图  15  不同堆叠层数的破坏模式图

    Figure  15.  Failure modes at different stacking layers

    图  16  5层结构在冲量0.039 N·s下的裂纹偏转

    Figure  16.  Crack deflection of five-layer structure under impulse of 0.039 N·s

    图  17  五层结构在冲量0.047 N·s下的微裂纹

    Figure  17.  Microcracks of five-layer structure under impulse of 0.047 N·s

    表  1  不同层级结构在不同药量下的动态响应

    Table  1.   Dynamic response of structure with different layers to different explosive charges

    冲量/(N·s)1 layer2 layers3 layers4 layers5 layers
    0.019
    0.030
    0.035
    0.039
    0.047
    下载: 导出CSV
  • [1] LIU Z Q, MEYERS M A, ZHANG Z F, et al. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications [J]. Progress in Materials Science, 2017, 88: 467–498. DOI: 10.1016/j.pmatsci.2017.04.013.
    [2] JIA Z A, YU Y, WANG L F. Learning from nature: use material architecture to break the performance tradeoffs [J]. Materials & Design, 2019, 168: 107650. DOI: 10.1016/j.matdes.2019.107650.
    [3] HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications [J]. Composites Part B: Engineering, 2020, 181: 107496. DOI: 10.1016/j.compositesb.2019.107496.
    [4] JI B H, GAO H J. Mechanical properties of nanostructure of biological materials [J]. Journal of the Mechanics and Physics of Solids, 2004, 52(9): 1963–1990. DOI: 10.1016/j.jmps.2004.03.006.
    [5] CHEN P Y, LIN A Y M, LIN Y S, et al. Structure and mechanical properties of selected biological materials [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(3): 208–226. DOI: 10.1016/j.jmbbm.2008.02.003.
    [6] 侯东芳, 周根树, 郑茂盛. 贝壳珍珠层断裂过程的原位观察及其增韧机制分析 [J]. 材料科学与工程学报, 2007, 25(3): 388–391. DOI: 10.3969/j.issn.1673-2812.2007.03.016.

    HOU D F, ZHOU G S, ZHENG M S. In situ SEM observation of crack propagation and analysis of the toughening mechanism in nacre [J]. Journal of Materials Science & Engineering, 2007, 25(3): 388–391. DOI: 10.3969/j.issn.1673-2812.2007.03.016.
    [7] 侯东芳, 周根树, 郑茂盛. 不同取向贝壳材料力学性能的压痕法研究 [J]. 三峡大学学报(自然科学版), 2006, 28(3): 246–249. DOI: 10.3969/j.issn.1672-948X.2006.03.016.

    HOU D F, ZHOU G S, ZHENG M S. Research of mechanical proprieties of nacre using indentation method [J]. Journal of China Three Gorges University (Natural Sciences), 2006, 28(3): 246–249. DOI: 10.3969/j.issn.1672-948X.2006.03.016.
    [8] 梁艳, 赵杰, 王来, 等. 贝壳的力学性能和增韧机制 [J]. 机械强度, 2007, 29(3): 507–511. DOI: 10.3321/j.issn:1001-9669.2007.03.031.

    LIANG Y, ZHAO J, WANG L, et al. Mechanical properties and toughening mechanisms of mollusk shell [J]. Journal of Mechanical Strength, 2007, 29(3): 507–511. DOI: 10.3321/j.issn:1001-9669.2007.03.031.
    [9] YIN Z, HANNARD F, BARTHELAT F. Impact-resistant nacre-like transparent materials [J]. Science, 2019, 364(6447): 1260–1263. DOI: 10.1126/science.aaw8988.
    [10] NGUYEN-VAN V, WICKRAMASINGHE S, GHAZLAN A, et al. Uniaxial and biaxial bioinspired interlocking composite panels subjected to dynamic loadings [J]. Thin-Walled Structures, 2020, 157: 107023. DOI: 10.1016/j.tws.2020.107023.
    [11] JIA H M, LI Y C, LUAN Y B, et al. Bioinspired Nacre-like GO-based bulk with easy scale-up process and outstanding mechanical properties [J]. Composites Part A: Applied Science and Manufacturing, 2020, 132: 105829. DOI: 10.1016/j.compositesa.2020.105829.
    [12] TAN G Q, YU Q, LIU Z Q, et al. Compression fatigue properties and damage mechanisms of a bioinspired nacre-like ceramic-polymer composite [J]. Scripta Materialia, 2021, 203: 114089. DOI: 10.1016/J.SCRIPTAMAT.2021.114089.
    [13] 武晓东, 张海广, 王瑜, 等. 冲击载荷下仿贝壳珍珠层Voronoi结构的动态力学响应 [J]. 高压物理学报, 2020, 34(6): 064201. DOI: 10.11858/gywlxb.20200559.

    WU X D, ZHANG H G, WANG Y, et al. Dynamic responses of nacre-like Voronoi structure under impact loading [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064201. DOI: 10.11858/gywlxb.20200559.
    [14] LIU F, LI T T, JIA Z A, et al. Combination of stiffness, strength, and toughness in 3D printed interlocking nacre-like composites [J]. Extreme Mechanics Letters, 2020, 35: 100621. DOI: 10.1016/j.eml.2019.100621.
    [15] 马骁勇, 梁海弋, 王联凤. 三维打印贝壳仿生结构的力学性能 [J]. 科学通报, 2016, 61(7): 728–734. DOI: 10.1360/N972015-00263.

    MA X Y, LIANG H Y, WANG L F. Multi-materials 3D printing application of shell biomimetic structure [J]. Chinese Science Bulletin, 2016, 61(7): 728–734. DOI: 10.1360/N972015-00263.
    [16] 刘英志, 雷建银, 王志华. 冲击载荷下仿贝壳砖泥结构的动态响应 [J]. 高压物理学报, 2022, 36(1): 014202. DOI: 10.11858/gywlxb.20210790.

    LIU Y Z, LEI J Y, WANG Z H. Dynamic response of narce-like brick and mortar structure under impact load [J]. Journal of High Pressure Physics, 2022, 36(1): 014202. DOI: 10.11858/gywlxb.20210790.
    [17] GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites [J]. Advanced Materials, 2017, 29(28): 1700060. DOI: 10.1002/adma.201700060.
    [18] JIA Z A, YU Y, HOU S Y, et al. Biomimetic architected materials with improved dynamic performance [J]. Journal of the Mechanics and Physics of Solids, 2019, 125: 178–197. DOI: 10.1016/j.jmps.2018.12.015.
    [19] KO K, JIN S, LEE S E, et al. Bio-inspired bimaterial composites patterned using three-dimensional printing [J]. Composites Part B: Engineering, 2019, 165: 594–603. DOI: 10.1016/j.compositesb.2019.02.008.
    [20] Livermore Software Technology Corporation. LS-DYNA keyword user’s manual [R]. Livermore: Livermore Software Technology Corporation, 2007.
    [21] 亨利奇. 爆炸动力学及其应用 [M]. 熊建国, 译. 北京: 科学出版社, 1987: 124–131.

    HENRYCH J. The dynamics of explosion and its use [M]. XIONG J G, trans. Beijing: Science Press, 1987: 124–131.
    [22] 贾贤. 天然生物材料及其仿生工程材料 [M]. 北京: 化学工业出版社, 2007: 26–32.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  656
  • HTML全文浏览量:  169
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-07
  • 修回日期:  2022-05-24
  • 网络出版日期:  2022-06-02
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回