• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

爆炸载荷下仿贝壳结构的动态响应

李志洋 雷建银 刘志芳

徐伟芳, 钟卫州, 陈刚, 李思忠, 陈忠富, 黄西成. 冲击拉伸实验试件几何尺寸的研究[J]. 爆炸与冲击, 2008, 28(2): 149-153. doi: 10.11883/1001-1455(2008)02-0149-05
引用本文: 李志洋, 雷建银, 刘志芳. 爆炸载荷下仿贝壳结构的动态响应[J]. 爆炸与冲击, 2022, 42(8): 083101. doi: 10.11883/bzycj-2022-0145
XU Wei-fang, ZHONG Wei-zhou, CHEN Gang, LI Si-zhong, CHEN Zhong-fu, HUANG Xi-cheng. On geometric shape of the specimen in impact tensile test[J]. Explosion And Shock Waves, 2008, 28(2): 149-153. doi: 10.11883/1001-1455(2008)02-0149-05
Citation: LI Zhiyang, LEI Jianyin, LIU Zhifang. Dynamic response of nacre-like structure under explosion load[J]. Explosion And Shock Waves, 2022, 42(8): 083101. doi: 10.11883/bzycj-2022-0145

爆炸载荷下仿贝壳结构的动态响应

doi: 10.11883/bzycj-2022-0145
基金项目: 国家自然科学基金(11902215)
详细信息
    作者简介:

    李志洋(1996- ),男,硕士, lizhiyang365@163.com

    通讯作者:

    雷建银(1989- ),男,博士, leijianyin@tyut.edu.cn

  • 中图分类号: O342

Dynamic response of nacre-like structure under explosion load

  • 摘要: 贝壳珍珠层是一种具有高强度和高韧性的天然材料,这种优异的性能主要来源于多尺度、多层级的“砖泥”结构。本文受贝壳特殊结构的启发,构建了仿贝壳砖泥结构的有限元模型,并进行了爆炸实验。通过实验发现:在爆炸冲量为0.047 N·s时,试件发生灾难性破坏,使得中心处发生掉落,且伴随着试件夹持端的剪切破坏,与数值模拟结果具有良好的一致性。在实验基础上,对仿贝壳砖泥结构在爆炸载荷下的动态响应进行了数值模拟。研究发现,在爆炸载荷下仿贝壳砖泥结构会产生五种不同的破坏模式,包括:Ⅰ,结构整体无损伤;Ⅱ,结构前表面无明显破坏,后表面发生破坏;Ⅲ,结构发生掉落型贯穿破坏,夹持端无剪切破坏;Ⅳ,结构发生小块掉落型贯穿破坏,夹持端发生剪切破坏;Ⅴ,结构发生大块掉落型贯穿破坏,夹持端发生剪切破坏。并且给出了不同破坏模式的临界阈值,单层砖泥结构的破坏阈值为0.019 N·s,五层砖泥结构的破坏阈值为0.047 N·s,当冲量超过破坏阈值时,试件发生灾难性破坏。研究分析了堆叠层数对仿生结构的力学响应,在同一冲量下,随着层数的增加,结构的破坏模式发生改变,由贯穿型破坏逐渐变为仅发生一定塑性变形。随着层数增加,结构的损伤阈值增加。最后提出仿贝壳砖泥结构的增韧机理主要有裂纹偏转和微裂纹。
  • 图  1  仿贝壳砖泥结构的单层和多层胞元建模

    Figure  1.  Single-layer and multi-layer cell construction process of nacre-like brick and mortar structure

    图  2  仿贝壳砖泥结构整体建模

    Figure  2.  Overall model building processes of nacre-like bricks and mortar structures

    图  3  五层仿贝壳砖泥结构实验样品

    Figure  3.  Front view of the five-layer nacre-like brick and mortar structure experimental piece

    图  4  爆炸实验装置

    Figure  4.  Explosion experimental device

    图  5  有限元模型

    Figure  5.  Diagram of FE model

    图  6  试验与数值模拟结果图

    Figure  6.  Test and numerical simulation results

    图  7  冲击波作用能量时程

    Figure  7.  History of shock wave energy

    图  8  失效模式Ⅰ,非弹性形变

    Figure  8.  Failure mode Ⅰ, inelastic deformation

    图  9  失效模式Ⅱ,局部损伤

    Figure  9.  Failure mode Ⅱ, partial damage

    图  10  失效模式Ⅲ,贯穿损伤

    Figure  10.  Failure mode Ⅲ, through-wall damage

    图  11  失效模式Ⅳ,贯穿及剪切损伤

    Figure  11.  Failure mode Ⅳ, through-wall and shear damage

    图  12  失效模式Ⅴ,破环式损伤

    Figure  12.  Failure mode Ⅴ, devastating damage

    图  13  五层结构在冲量0.030 N·s下的有效应力分布

    Figure  13.  Distribution of effective stress of five-layer structure under impulse of 0.030 N·s

    图  14  五层结构在冲量0.047 N·s下的有效应力分布

    Figure  14.  Distribution of effective stress of five-layer structure under impulse of 0.047 N·s

    图  15  不同堆叠层数的破坏模式图

    Figure  15.  Failure modes at different stacking layers

    图  16  5层结构在冲量0.039 N·s下的裂纹偏转

    Figure  16.  Crack deflection of five-layer structure under impulse of 0.039 N·s

    图  17  五层结构在冲量0.047 N·s下的微裂纹

    Figure  17.  Microcracks of five-layer structure under impulse of 0.047 N·s

    表  1  不同层级结构在不同药量下的动态响应

    Table  1.   Dynamic response of structure with different layers to different explosive charges

    冲量/(N·s)1 layer2 layers3 layers4 layers5 layers
    0.019
    0.030
    0.035
    0.039
    0.047
    下载: 导出CSV
  • [1] LIU Z Q, MEYERS M A, ZHANG Z F, et al. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications [J]. Progress in Materials Science, 2017, 88: 467–498. DOI: 10.1016/j.pmatsci.2017.04.013.
    [2] JIA Z A, YU Y, WANG L F. Learning from nature: use material architecture to break the performance tradeoffs [J]. Materials & Design, 2019, 168: 107650. DOI: 10.1016/j.matdes.2019.107650.
    [3] HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications [J]. Composites Part B: Engineering, 2020, 181: 107496. DOI: 10.1016/j.compositesb.2019.107496.
    [4] JI B H, GAO H J. Mechanical properties of nanostructure of biological materials [J]. Journal of the Mechanics and Physics of Solids, 2004, 52(9): 1963–1990. DOI: 10.1016/j.jmps.2004.03.006.
    [5] CHEN P Y, LIN A Y M, LIN Y S, et al. Structure and mechanical properties of selected biological materials [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1(3): 208–226. DOI: 10.1016/j.jmbbm.2008.02.003.
    [6] 侯东芳, 周根树, 郑茂盛. 贝壳珍珠层断裂过程的原位观察及其增韧机制分析 [J]. 材料科学与工程学报, 2007, 25(3): 388–391. DOI: 10.3969/j.issn.1673-2812.2007.03.016.

    HOU D F, ZHOU G S, ZHENG M S. In situ SEM observation of crack propagation and analysis of the toughening mechanism in nacre [J]. Journal of Materials Science & Engineering, 2007, 25(3): 388–391. DOI: 10.3969/j.issn.1673-2812.2007.03.016.
    [7] 侯东芳, 周根树, 郑茂盛. 不同取向贝壳材料力学性能的压痕法研究 [J]. 三峡大学学报(自然科学版), 2006, 28(3): 246–249. DOI: 10.3969/j.issn.1672-948X.2006.03.016.

    HOU D F, ZHOU G S, ZHENG M S. Research of mechanical proprieties of nacre using indentation method [J]. Journal of China Three Gorges University (Natural Sciences), 2006, 28(3): 246–249. DOI: 10.3969/j.issn.1672-948X.2006.03.016.
    [8] 梁艳, 赵杰, 王来, 等. 贝壳的力学性能和增韧机制 [J]. 机械强度, 2007, 29(3): 507–511. DOI: 10.3321/j.issn:1001-9669.2007.03.031.

    LIANG Y, ZHAO J, WANG L, et al. Mechanical properties and toughening mechanisms of mollusk shell [J]. Journal of Mechanical Strength, 2007, 29(3): 507–511. DOI: 10.3321/j.issn:1001-9669.2007.03.031.
    [9] YIN Z, HANNARD F, BARTHELAT F. Impact-resistant nacre-like transparent materials [J]. Science, 2019, 364(6447): 1260–1263. DOI: 10.1126/science.aaw8988.
    [10] NGUYEN-VAN V, WICKRAMASINGHE S, GHAZLAN A, et al. Uniaxial and biaxial bioinspired interlocking composite panels subjected to dynamic loadings [J]. Thin-Walled Structures, 2020, 157: 107023. DOI: 10.1016/j.tws.2020.107023.
    [11] JIA H M, LI Y C, LUAN Y B, et al. Bioinspired Nacre-like GO-based bulk with easy scale-up process and outstanding mechanical properties [J]. Composites Part A: Applied Science and Manufacturing, 2020, 132: 105829. DOI: 10.1016/j.compositesa.2020.105829.
    [12] TAN G Q, YU Q, LIU Z Q, et al. Compression fatigue properties and damage mechanisms of a bioinspired nacre-like ceramic-polymer composite [J]. Scripta Materialia, 2021, 203: 114089. DOI: 10.1016/J.SCRIPTAMAT.2021.114089.
    [13] 武晓东, 张海广, 王瑜, 等. 冲击载荷下仿贝壳珍珠层Voronoi结构的动态力学响应 [J]. 高压物理学报, 2020, 34(6): 064201. DOI: 10.11858/gywlxb.20200559.

    WU X D, ZHANG H G, WANG Y, et al. Dynamic responses of nacre-like Voronoi structure under impact loading [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064201. DOI: 10.11858/gywlxb.20200559.
    [14] LIU F, LI T T, JIA Z A, et al. Combination of stiffness, strength, and toughness in 3D printed interlocking nacre-like composites [J]. Extreme Mechanics Letters, 2020, 35: 100621. DOI: 10.1016/j.eml.2019.100621.
    [15] 马骁勇, 梁海弋, 王联凤. 三维打印贝壳仿生结构的力学性能 [J]. 科学通报, 2016, 61(7): 728–734. DOI: 10.1360/N972015-00263.

    MA X Y, LIANG H Y, WANG L F. Multi-materials 3D printing application of shell biomimetic structure [J]. Chinese Science Bulletin, 2016, 61(7): 728–734. DOI: 10.1360/N972015-00263.
    [16] 刘英志, 雷建银, 王志华. 冲击载荷下仿贝壳砖泥结构的动态响应 [J]. 高压物理学报, 2022, 36(1): 014202. DOI: 10.11858/gywlxb.20210790.

    LIU Y Z, LEI J Y, WANG Z H. Dynamic response of narce-like brick and mortar structure under impact load [J]. Journal of High Pressure Physics, 2022, 36(1): 014202. DOI: 10.11858/gywlxb.20210790.
    [17] GU G X, TAKAFFOLI M, BUEHLER M J. Hierarchically enhanced impact resistance of bioinspired composites [J]. Advanced Materials, 2017, 29(28): 1700060. DOI: 10.1002/adma.201700060.
    [18] JIA Z A, YU Y, HOU S Y, et al. Biomimetic architected materials with improved dynamic performance [J]. Journal of the Mechanics and Physics of Solids, 2019, 125: 178–197. DOI: 10.1016/j.jmps.2018.12.015.
    [19] KO K, JIN S, LEE S E, et al. Bio-inspired bimaterial composites patterned using three-dimensional printing [J]. Composites Part B: Engineering, 2019, 165: 594–603. DOI: 10.1016/j.compositesb.2019.02.008.
    [20] Livermore Software Technology Corporation. LS-DYNA keyword user’s manual [R]. Livermore: Livermore Software Technology Corporation, 2007.
    [21] 亨利奇. 爆炸动力学及其应用 [M]. 熊建国, 译. 北京: 科学出版社, 1987: 124–131.

    HENRYCH J. The dynamics of explosion and its use [M]. XIONG J G, trans. Beijing: Science Press, 1987: 124–131.
    [22] 贾贤. 天然生物材料及其仿生工程材料 [M]. 北京: 化学工业出版社, 2007: 26–32.
  • 期刊类型引用(2)

    1. 肖云凯, 方秦, 吴昊, 孔祥振, 彭永. 考虑靶背自由表面和开裂影响的刚性尖头弹贯穿金属靶板模型. 爆炸与冲击. 2016(03): 359-369 . 本站查看
    2. 肖云凯, 方秦, 吴昊, 孔祥振. 刚性尖头弹扩孔贯穿金属靶板理论模型的讨论. 振动与冲击. 2016(01): 195-202+215 . 百度学术

    其他类型引用(0)

  • 加载中
推荐阅读
弹体高速侵彻花岗岩靶体的结构响应特性
韩明海 等, 爆炸与冲击, 2025
弹体侵彻钢筋混凝土遮弹层的阻力方程
王武 等, 爆炸与冲击, 2025
冲击荷载下含铜矿岩能量耗散的数值模拟
左庭 等, 爆炸与冲击, 2025
钨丝/锆基非晶复合材料与93w合金弹芯侵彻靶板的损伤特征
吴烁罡 等, 爆炸与冲击, 2024
溅射用难熔金属靶材的制备及再制造工艺研究进展
潘亚飞1a 等, 中国粉体技术, 2025
超高速撞击下球形弹丸破碎特性仿真研究
盖芳芳 等, 广东石油化工学院学报, 2022
Pele侵彻金属靶破碎效应的相似分析
徐立志 等, 高压物理学报, 2023
Dna-encoded library-enabled discovery of proximity-inducing small molecules
Mason, Jeremy W., NATURE CHEMICAL BIOLOGY, 2024
Current research status of interface of ceramic-metal laminated composite material for armor protection
ACTA METALLURGICA SINICA
Transient rock breaking characteristics by successive impact of shield disc cutters under confining pressure conditions
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2024
Powered by
图(17) / 表(1)
计量
  • 文章访问数:  757
  • HTML全文浏览量:  219
  • PDF下载量:  159
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-04-07
  • 修回日期:  2022-05-24
  • 网络出版日期:  2022-06-02
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回