6061-T6铝合金动态拉伸本构关系及失效行为

周伦 苏兴亚 敬霖 邓贵德 赵隆茂

周伦, 苏兴亚, 敬霖, 邓贵德, 赵隆茂. 6061-T6铝合金动态拉伸本构关系及失效行为[J]. 爆炸与冲击, 2022, 42(9): 091407. doi: 10.11883/bzycj-2022-0154
引用本文: 周伦, 苏兴亚, 敬霖, 邓贵德, 赵隆茂. 6061-T6铝合金动态拉伸本构关系及失效行为[J]. 爆炸与冲击, 2022, 42(9): 091407. doi: 10.11883/bzycj-2022-0154
ZHOU Lun, SU Xingya, JING Lin, DENG Guide, ZHAO Longmao. Dynamic tensile constitutive relationship and failure behavior of 6061-T6 aluminum alloy[J]. Explosion And Shock Waves, 2022, 42(9): 091407. doi: 10.11883/bzycj-2022-0154
Citation: ZHOU Lun, SU Xingya, JING Lin, DENG Guide, ZHAO Longmao. Dynamic tensile constitutive relationship and failure behavior of 6061-T6 aluminum alloy[J]. Explosion And Shock Waves, 2022, 42(9): 091407. doi: 10.11883/bzycj-2022-0154

6061-T6铝合金动态拉伸本构关系及失效行为

doi: 10.11883/bzycj-2022-0154
基金项目: 国家自然科学基金(12122211);国家重点研发计划(2016YFF0203102);四川省自然科学基金(2022NSFSC0035)
详细信息
    作者简介:

    周 伦(1995- ),男,硕士研究生,zhoulunabc@126.com

    通讯作者:

    敬 霖(1984- ),男,博士,研究员,博士生导师,jinglin@swjtu.edu.cn

  • 中图分类号: O347.3

Dynamic tensile constitutive relationship and failure behavior of 6061-T6 aluminum alloy

  • 摘要: 采用HMH-206高速材料试验机开展了6061-T6铝合金在0.001~100 s−1应变率范围内的静、动态拉伸力学性能实验,分析了其应力-应变响应特征和应变率敏感性,讨论了应变率对6061-T6铝合金流动应力和应变率敏感性指数的影响,并基于实验结果对Johnson-Cook本构模型进行了修正。结合缺口试件的实验结果和模拟数据,得到了材料的Johnson-Cook失效模型参数,并对模型的准确性和适用性进行了验证。结果表明,在拉伸载荷作用下,6061-T6铝合金表现出明显的应变硬化特征和应变率敏感性,其流动应力随应变率的升高而提高,修正的Johnson-Cook本构模型可以描述材料的动态塑性流动行为,建立的Johnson-Cook失效模型能够表征材料的断裂失效行为。
  • 图  1  拉伸试件及其几何尺寸(单位:mm)

    Figure  1.  Picture and dimension of the tensile specimens (unit: mm)

    图  2  不同应变率下6061-T6铝合金的拉伸实验结果

    Figure  2.  Tensile test results of 6061-T6 aluminum alloy at different strain rates

    图  3  不同应变下应变率敏感性指数与应变率之间的关系

    Figure  3.  Relationship between strain rate sensitivity index and strain rate at different strains

    图  4  模型预测与实验结果对比

    Figure  4.  Comparison of predictions by the models with experimental results

    图  5  6061-T6铝合金缺口试件和拉伸载荷-位移曲线

    Figure  5.  Notched 6061-T6 aluminum alloy specimens and their tensile load-displacement curves

    图  6  实验和数值模拟得到的缺口试件载荷-位移曲线

    Figure  6.  Load-displacement curves of the notched specimens obtained by experiments and simulations

    图  7  不同缺口半径试件的Mises应力云图和应力三轴度分布

    Figure  7.  Mises stress nephograms and stress triaxiality distributions for notched specimens with different radii

    图  8  缺口试件最小截面中心点应力三轴度与等效塑性应变的关系

    Figure  8.  Relationship between stress triaxiality at the center points of the minimum cross-sections of notched specimens and equivalent plastic strain

    图  9  断裂应变与应力三轴度和无量纲对数应变率的关系

    Figure  9.  Relationships of fracture strain with stress triaxiality and dimensionless strain rate

    图  10  6061-T6铝合金模型验证试件

    Figure  10.  The 6061-T6 aluminum alloy specimen used for model verification

    图  11  不同加载速度下实验和模拟得到的载荷-位移曲线对比

    Figure  11.  Comparison of the load-displacement curves obtained by experiments and simulations at different load velocities

    表  1  6061-T6铝合金的化学成分(质量分数)

    Table  1.   Chemical composition of 6061-T6 aluminum alloy (mass fraction)

    %
    元素SiFeCuMnMgCrZnTiAl
    含量0.40.70.150.150.50.040.250.15余量
    下载: 导出CSV
  • [1] 高玉龙, 孙晓红. 高速列车用6008铝合金动态变形本构与损伤模型参数研究 [J]. 爆炸与冲击, 2021, 41(3): 033101. DOI: 10.11883/bzycj-2020-0119.

    GAO Y L, SUN X H. On the parameters of dynamic deformation and damage models of aluminum alloy 6008-T4 used for high-speed railway vehicles [J]. Explosion and Shock Waves, 2021, 41(3): 033101. DOI: 10.11883/bzycj-2020-0119.
    [2] 王礼立. 高应变率下材料动态力学性能 [J]. 力学与实践, 1982, 4(1): 9–19, 26.

    WANG L L. Dynamic mechanical properties of materials under high strain rate [J]. Mechanics and Engineering, 1982, 4(1): 9–19, 26.
    [3] 任冀宾, 汪存显, 张欣玥, 等. 2A97铝锂合金的Johnson-Cook本构模型及失效参数 [J]. 华南理工大学学报(自然科学版), 2019, 47(8): 136–144. DOI: 10.12141/j.issn.1000-565X.180554.

    REN J B, WANG C X, ZHANG X Y, et al. Johnson-Cook constitutive model and failure parameters of 2A97 Al-Li alloy [J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(8): 136–144. DOI: 10.12141/j.issn.1000-565X.180554.
    [4] COWPER G R, SYMONDS P S. Strain hardening and strain-rate effect in the impact loading of cantilever beams [R]. Providence, USA: Brown University, 1957.
    [5] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [6] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. DOI: 10.1063/1.338024.
    [7] JING L, SU X Y, ZHAO L M. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range of strain rates and temperatures [J]. Results in Physics, 2017, 7: 1452–1461. DOI: 10.1016/j.rinp.2017.04.015.
    [8] SU X Y, ZHOU L, JING L, et al. Experimental investigation and constitutive description of railway wheel/rail steels under medium-strain-rate tensile loading [J]. Journal of Materials Engineering and Performance, 2020, 29(3): 2015–2025. DOI: 10.1007/s11665-020-04720-1.
    [9] 郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系 [J]. 爆炸与冲击, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.

    GUO Z T, GAO B, GUO Z, et al. Dynamic constitutive relation based on J-C model of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(4): 804–810. DOI: 10.11883/bzycj-2016-0333.
    [10] 张伟, 肖新科, 魏刚. 7A04铝合金的本构关系和失效模型 [J]. 爆炸与冲击, 2011, 31(1): 81–87. DOI: 10.11883/1001-1455(2011)01-0081-07.

    ZHANG W, XIAO X K, WEI G. Constitutive relation and fracture model of 7A04 aluminum alloy [J]. Explosion and Shock Waves, 2011, 31(1): 81–87. DOI: 10.11883/1001-1455(2011)01-0081-07.
    [11] 贾东, 黄西成, 胡文军, 等. 基于J-C模型的镁合金MB2动静态拉伸破坏行为 [J]. 爆炸与冲击, 2017, 37(6): 1010–1016. DOI: 10.11883/1001-1455(2017)06-1010-07.

    JIA D, HUANG X C, HU W J, et al. Fracture behavior of magnesium alloy MB2 under quasi-static and dynamic tension loading based on Johnson-Cook model [J]. Explosion and Shock Waves, 2017, 37(6): 1010–1016. DOI: 10.11883/1001-1455(2017)06-1010-07.
    [12] 门建兵, 卢易浩, 蒋建伟, 等. 杆式EFP用钽钨合金JC失效模型参数 [J]. 高压物理学报, 2020, 34(6): 065105. DOI: 10.11858/gywlxb.20200550.

    MEN J B, LU Y H, JIANG J W, et al. Johnson-Cook failure model parameters of Tantalum-Tungsten alloy for rod-shaped EFP [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065105. DOI: 10.11858/gywlxb.20200550.
    [13] 余万千, 郁锐, 崔世堂. 考虑应力三轴度影响的30CrMnSiNi2A钢韧性断裂研究 [J]. 爆炸与冲击, 2021, 41(3): 031404. DOI: 10.11883/bzycj-2020-0334.

    YU W Q, YU R, CUI S T. On ductile fracture of 30CrMnSiNi2A steel considering effects of stress triaxiality [J]. Explosion and Shock Waves, 2021, 41(3): 031404. DOI: 10.11883/bzycj-2020-0334.
    [14] 郭子涛, 舒开鸥, 高斌, 等. 基于J-C模型的Q235钢的失效准则 [J]. 爆炸与冲击, 2018, 38(6): 1325–1332. DOI: 10.11883/bzycj-2017-0163.

    GUO Z T, SHU K O, GAO B, et al. J-C model based failure criterion and verification of Q235 steel [J]. Explosion and Shock Waves, 2018, 38(6): 1325–1332. DOI: 10.11883/bzycj-2017-0163.
    [15] BOBBILI R, MADHU V. Flow and fracture characteristics of near alpha titanium alloy [J]. Journal of Alloys and Compounds, 2016, 684: 162–170. DOI: 10.1016/j.jallcom.2016.05.155.
    [16] 丁向群, 何国求, 陈成澍, 等. 6000系汽车车用铝合金的研究应用进展 [J]. 材料科学与工程学报, 2005, 23(2): 302–305. DOI: 10.3969/j.issn.1673-2812.2005.02.039.

    DING X Q, HE G Q, CHEN C S, et al. Advance in studies of 6000 aluminum alloy for automobile [J]. Journal of Materials Science and Engineering, 2005, 23(2): 302–305. DOI: 10.3969/j.issn.1673-2812.2005.02.039.
    [17] AMBRIZ R R, BARRERA G, GARCÍA R, et al. A comparative study of the mechanical properties of 6061-T6 GMA welds obtained by the indirect electric arc (IEA) and the modified indirect electric arc (MIEA) [J]. Materials & Design, 2009, 30(7): 2446–2453. DOI: 10.1016/j.matdes.2008.10.025.
    [18] LEE W S, SHYU J C, CHIOU S T. Effect of strain rate on impact response and dislocation substructure of 6061-T6 aluminum alloy [J]. Scripta Materialia, 1999, 42(1): 51–56. DOI: 10.1016/S1359-6462(99)00308-5.
    [19] ZHU D J, MOBASHER B, RAJAN S D, et al. Characterization of dynamic tensile testing using aluminum alloy 6061-T6 at intermediate strain rates [J]. Journal of Engineering Mechanics, 2011, 137(10): 669–679. DOI: 10.1061/(ASCE)EM.1943-7889.0000264.
    [20] ACHARYA S, GUPTA R K, GHOSH J, et al. High strain rate dynamic compressive behaviour of Al6061-T6 alloys [J]. Materials Characterization, 2017, 127: 185–197. DOI: 10.1016/j.matchar.2017.03.005.
    [21] ODESHI A G, OWOLABI G M, SINGH M N K, et al. Deformation and fracture behavior of alumina particle-reinforced Al 6061-T6 composite during dynamic mechanical loading [J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2674–2680. DOI: 10.1007/s11661-007-9242-2.
    [22] 孟宪明, 谢书港, 方锐, 等. B340-590DP双相高强钢板的动态变形行为 [J]. 钢铁研究学报, 2015, 27(6): 51–55. DOI: 10.13228/j.boyuan.issn1001-0963.20140425.

    MENG X M, XIE S G, FANG R, et al. Dynamic deformation behavior of B340-590DP steel sheet [J]. Journal of Iron and Steel Research, 2015, 27(6): 51–55. DOI: 10.13228/j.boyuan.issn1001-0963.20140425.
    [23] YAN S L, YANG H, LI H W, et al. Variation of strain rate sensitivity of an aluminum alloy in a wide strain rate range: mechanism analysis and modeling [J]. Journal of Alloys and Compounds, 2016, 688: 776–786. DOI: 10.1016/j.jallcom.2016.07.077.
    [24] SUO T, CHEN Y Z, LI Y L, et al. Strain rate sensitivity and deformation kinetics of ECAPed aluminium over a wide range of strain rates [J]. Materials Science and Engineering A, 2013, 560: 545–551. DOI: 10.1016/j.msea.2012.09.100.
    [25] 谢凡, 张涛, 陈继恩, 等. 应力三轴度的有限元计算修正 [J]. 爆炸与冲击, 2012, 32(1): 8–14. DOI: 10.11883/1001-1455(2012)01-0008-07.

    XIE F, ZHANG T, CHEN J E, et al. Updating of the stress triaxiality by finite element analysis [J]. Explosion and Shock Waves, 2012, 32(1): 8–14. DOI: 10.11883/1001-1455(2012)01-0008-07.
    [26] BAO Y B, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space [J]. International Journal of Mechanical Sciences, 2004, 46(1): 81–98. DOI: 10.1016/j.ijmecsci.2004.02.006.
    [27] BRIDGMAN P W. Studies in large plastic flow and fracture with special emphasis on the effects of hydrostatic pressure [M]. New York, USA: McGraw-Hill, 1952.
    [28] 贾东, 黄西成, 莫军. 基于应变路径和分布效应的应力三轴度确定方法 [J]. 科学技术与工程, 2013, 13(10): 2625-2629; 2634. DOI: 10.3969/j.issn.1671-1815.2013.10.002.

    JIA D, HUANG X C, MO J. A method to determine stress triaxiality based on strain path and distribution effect [J]. Science Technology and Engineering, 2013, 13(10): 2625-2629; 2634. DOI: 10.3969/j.issn.1671-1815.2013.10.002.
    [29] 衣海娇, 甄莹, 曹宇光, 等. 6061-T6铝合金断裂应变与应力三轴度关系研究 [J]. 机械强度, 2020, 42(3): 551–558. DOI: 10.16579/j.issn.1001.9669.2020.03.007.

    YI H J, ZHEN Y, CAO Y G, et al. Research on the relationship between fracture strain and triaxiality of 6061-T6 aluminum alloy [J]. Journal of Mechanical Strength, 2020, 42(3): 551–558. DOI: 10.16579/j.issn.1001.9669.2020.03.007.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  826
  • HTML全文浏览量:  238
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-08
  • 修回日期:  2022-08-23
  • 网络出版日期:  2022-09-05
  • 刊出日期:  2022-09-29

目录

    /

    返回文章
    返回