• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

液压膨胀环恒应变率加载技术

李嘉皓 徐便 郑宇轩 周风华

李嘉皓, 徐便, 郑宇轩, 周风华. 液压膨胀环恒应变率加载技术[J]. 爆炸与冲击, 2023, 43(2): 024101. doi: 10.11883/bzycj-2022-0160
引用本文: 李嘉皓, 徐便, 郑宇轩, 周风华. 液压膨胀环恒应变率加载技术[J]. 爆炸与冲击, 2023, 43(2): 024101. doi: 10.11883/bzycj-2022-0160
LI Jiahao, XU Bian, ZHENG Yuxuan, ZHOU Fenghua. Constant strain-rate loading of liquid-driving expanding ring[J]. Explosion And Shock Waves, 2023, 43(2): 024101. doi: 10.11883/bzycj-2022-0160
Citation: LI Jiahao, XU Bian, ZHENG Yuxuan, ZHOU Fenghua. Constant strain-rate loading of liquid-driving expanding ring[J]. Explosion And Shock Waves, 2023, 43(2): 024101. doi: 10.11883/bzycj-2022-0160

液压膨胀环恒应变率加载技术

doi: 10.11883/bzycj-2022-0160
基金项目: 国家自然科学基金(12272193,11932018);冲击波物理与爆轰物理重点实验室基金(6142A03191004)
详细信息
    作者简介:

    李嘉皓(1996- ),男,硕士研究生,948602380@qq.com

    通讯作者:

    郑宇轩(1986- ),男,博士,副教授,zhengyuxuan@nbu.edu.cn

  • 中图分类号: O347.1

Constant strain-rate loading of liquid-driving expanding ring

  • 摘要: 膨胀环实验技术主要包括爆炸膨胀环实验技术和电磁膨胀环实验技术,实验过程中膨胀环的加载应变率在达到峰值后会随着圆环的膨胀而迅速降低,给研究应变率敏感材料的拉伸碎裂带来极大的不便。在前期提出的液压膨胀环实验技术的基础上,发展了一种恒应变率加载技术。首先,从理论上获得了实现金属圆环恒应变率膨胀所需的液压加载曲线的近似表达式;然后,采用有限元流固耦合数值模拟了液压膨胀环装置中1060-O铝环的膨胀碎裂过程,在给定液压加载曲线下,膨胀环的环向应变率在应变率稳定阶段上下波动范围最大不超过20%;并进一步研究了加载曲线对碎裂过程中应变率的影响规律。在液压膨胀环实验装置上对1060-O 铝环开展了膨胀环实验,验证了恒应变率加载技术的可行性。
  • 图  1  液压膨胀环装置原理示意图[15]

    Figure  1.  Schematic diagram of the liquid-driving expanding ring[15]

    图  2  理想恒应变率膨胀时程曲线

    Figure  2.  Time history curve of strain-rate in ideal expansion

    图  3  液压膨胀环的有限元模型

    Figure  3.  Finite element model of liquid-driving expanding ring

    图  4  理论计算所得的水流加载曲线

    Figure  4.  Time history curves of theoretical loading velocities at different strain rates

    图  5  径向膨胀速度曲线

    Figure  5.  Expanding velocity under hydraulic loading

    图  6  膨胀环的应变率历史曲线

    Figure  6.  Time history curves of expansion strain rates

    图  7  膨胀环环向速度和径向速度时程曲线(应变率6 000 s−1

    Figure  7.  Time history curves of radial velocity and circumferential velocity at the strain rate of 6 000 s−1

    图  8  膨胀环环向应力和径向应力时程曲线(应变率6 000 s−1

    Figure  8.  Time history curves of radial stress and circumferential stress at the strain rate of 6 000 s−1

    图  9  改进后的水流加载曲线

    Figure  9.  Modified curves of loading velocity

    图  10  改进后的应变率曲线

    Figure  10.  Modified curves of strain rate

    图  11  不同应变率增长阶段下的水流加载曲线

    Figure  11.  Loading curves in different strain rate growth phase

    图  12  不同应变率增长阶段时间下的应变率时程曲线

    Figure  12.  Strain rate curves in different strain rate growth phase

    图  13  液压膨胀环实验装置

    Figure  13.  Experimental device of the liquid-driving expanding ring

    图  14  实验中的水流加载速度曲线

    Figure  14.  Loading velocity curve in experiment

    图  15  实验中的应变率曲线

    Figure  15.  Strain rate obtained in experiment

    表  1  1060-O Al的材料参数[19]

    Table  1.   Parameters of 1060-O aluminum[19]

    ρ/(kg·m−3)c/(J·kg−1·K−1)βθt/Kθm/K弹性参数
    E/GPaµ
    2 7709000.92981 048700.34
    塑性参数损伤演化参数
    A/MPaB/MPaCnm˙ε0/s1d1d2d3d4d5Gc/(J·m−2)
    27430.0250.34110.130.13−1.50.0115 700
    下载: 导出CSV

    表  2  加载曲线中的基本物理参数

    Table  2.   Physical parameters in the loading curve

    r0/mmh/mmR/mm˙ε1/s−1t1/μs
    17.51.5154 000~10 00040
    下载: 导出CSV
  • [1] JOHNSON P C, STEIN B A, DAVH R S. Measurement of dynamic plastic flow properties under uniform stress [C] // Symposium on the Dynamic Behavior of Materials. Albuquerque, USA: American Society for Testing and Materials, 1963: 195–198. DOI: 10.1520/STP42030S.
    [2] NIORDSON F I. A unit for testing materials at high strain rates [J]. Experimental Mechanics, 1965, 5(1): 29–32. DOI: 10.1007/BF02320901.
    [3] WARNES R H, DUFFEY T A, KARPP R R, et al. Improved technique for determining dynamic material properties using the expanding ring [C] // International Conference on the Meteallurgical Effects of High Strain Rate Deformation and Fabrication. Albuquerque, NM, USA, 1980.
    [4] GRADY D E, BENSON D A. Fragmentation of metal rings by electromagnetic loading [J]. Experimental Mechanics, 1983, 23(4): 393–400. DOI: 10.1007/BF02330054.
    [5] GOURDIN W H. Analysis and assessment of electromagnetic ring expansion as a high-strain-rate test [J]. Journal Applied Physics, 1989, 65: 411–422. DOI: 10.1063/1.343121.
    [6] GOURDIN W H, WEINLAND S L, BOLING R M. Development of the electromagnetically launched expanding ring as a high-strain-rate test technique [J]. Review of Scientific Instruments, 1989, 60(3): 427–432. DOI: 10.1063/1.1140395.
    [7] 桂毓林, 孙承纬, 李强, 等. 实现金属环动态拉伸的电磁加载技术研究 [J]. 爆炸与冲击, 2006, 26(6): 481–485. DOI: 10.11883/1001-1455(2006)06-0481-05.

    GUI Y L, SUN C W, LI Q, et al. Experimental studies on dynamic tension of metal ring by electromagnetic loading [J]. Explosion and Shock Waves, 2006, 26(6): 481–485. DOI: 10.11883/1001-1455(2006)06-0481-05.
    [8] 桂毓林. 电磁加载下金属膨胀环的动态断裂与碎裂研究 [D]. 四川绵阳: 中国工程物理研究院, 2007.

    GUI Y L. The studies on the dynamic fracture and fragmentation of metal freely expanding ring driven by electromagnetically loading [D]. Mianyang, Sichuan, China: China Academy of Engineering Physics, 2007.
    [9] 汤铁钢, 李庆忠, 陈永涛, 等. 实现材料高应变率拉伸加载的爆炸膨胀环技术 [J]. 爆炸与冲击, 2009, 29(5): 546–549. DOI: 10.11883/1001-1455(2009)05-0546-04.

    TANG T G, LI Q Z, CHEN Y T, et al. An improved technique for dynamic tension of metal ring by explosive loading [J]. Explosion and Shock Waves, 2009, 29(5): 546–549. DOI: 10.11883/1001-1455(2009)05-0546-04.
    [10] 汤铁钢, 桂毓林, 李庆忠, 等. 爆炸膨胀环实验数据处理方法讨论 [J]. 爆炸与冲击, 2010, 30(5): 505–510. DOI: 10.11883/1001-1455(2010)05-0505-06.

    TANG T G, GUI Y L, LI Q Z, et al. A discussion of data processing techniques for expanding ring tests [J]. Explosion and Shock Waves, 2010, 30(5): 505–510. DOI: 10.11883/1001-1455(2010)05-0505-06.
    [11] MOTT N F. Fragmentation of shell cases [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1947, 189(1018): 300–308. DOI: 10.1098/rspa.1947.0042.
    [12] GRADY D E. Fragmentation of rings and shells: the legacy of N. F. Mott [M]. Berlin, Germany: Springer, 2006.
    [13] KIPP M E, GRADY D E. Dynamic fracture growth and interaction in one dimension [J]. Journal of the Mechanics and Physics of Solids, 1985, 33(4): 399–415. DOI: 10.1016/0022-5096(85)90036-5.
    [14] 郑宇轩, 周风华, 胡时胜. 一种基于SHPB的冲击膨胀环实验技术 [J]. 爆炸与冲击, 2014, 34(4): 483–488. DOI: 10.11883/1001-1455(2014)04-0483-06.

    ZHENG Y X, ZHOU F H, HU S S. An SHPB-based experimental technique for dynamic fragmentations of expanding rings [J]. Explosion and Shock Waves, 2014, 34(4): 483–488. DOI: 10.11883/1001-1455(2014)04-0483-06.
    [15] 张佳, 郑宇轩, 周风华. 立式液压膨胀环实验技术研究 [J]. 宁波大学学报(理工版), 2017, 30(2): 35–38. DOI: 10.3969/j.issn.1001-5132.2017.02.007.

    ZHANG J, ZHENG Y X, ZHOU F H. Experimental technique for fragmentation of liquid-driven expanding ring [J]. Journal of Ningbo University (Natural Science and Engineering), 2017, 30(2): 35–38. DOI: 10.3969/j.issn.1001-5132.2017.02.007.
    [16] 李天密, 张佳, 方继松, 等. PMMA膨胀环动态拉伸碎裂实验研究 [J]. 力学学报, 2018, 50(4): 820–827. DOI: 10.6052/0459-1879-18-016.

    LI T M, ZHANG J, FANG J S, et al. Experimental study of the high velocity expansion and fragmentation of PMMA rings [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 820–827. DOI: 10.6052/0459-1879-18-016.
    [17] 汤佳妮, 徐便, 郑宇轩, 等. 脆性膨胀环动态拉伸碎裂实验研究 [J]. 爆炸与冲击, 2021, 41(1): 014101. DOI: 10.11883/bzycj-2020-0049.

    TANG J N, XU B, ZHENG Y X, et al. Experimental study for dynamic fragmentation of brittle expansion rings [J]. Explosion and Shock Waves, 2021, 41(1): 014101. DOI: 10.11883/bzycj-2020-0049.
    [18] 卢思凡, 张佳, 王珠, 等. 液压膨胀环动态拉伸碎裂的有限元模拟 [J]. 固体力学学报, 2019(4): 372–380. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2019.012.

    LU S F, ZHANG J, WANG Z, et al. FEM Simulation of dynamic fragmentation of liquid-driving expanding ring [J]. Chinese Journal of Solid Mechanics, 2019(4): 372–380. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2019.012.
    [19] 张佳. 基于SHPB的液压膨胀环实验研究 [D]. 浙江宁波: 宁波大学, 2017.

    ZHANG J. Research on experiment of hydraulic expanding ring technology based on SHPB [D]. Ningbo, Zhejiang, China: Ningbo University, 2017.
  • 期刊类型引用(1)

    1. 刘宗兴,张春阳,曹苗,陈斐颖,刘军,李玉龙. 电磁加载膨胀环试验技术的发展及应用. 力学进展. 2024(04): 639-668 . 百度学术

    其他类型引用(2)

  • 加载中
推荐阅读
用于软材料的中应变率lshpb系统及应用
徐沛栋 等, 爆炸与冲击, 2025
不同应变率下皮质骨压缩力学实验与本构模型
徐诚意 等, 爆炸与冲击, 2025
恒定高应变率拉伸条件下泡沫金属力学性能
张晓阳 等, 爆炸与冲击, 2024
脉冲载荷下加筋圆板的各向同性快速等效方法
焦重熙 等, 爆炸与冲击, 2024
航发轴承套圈电磁辅助轧制成形残余应力和组织演变
钱东升 等, 轴承, 2024
高温高应变率下钛合金ti6al4v的动态力学行为及本构关系
杨东 等, 高压物理学报, 2024
6061铝电磁膨胀环的动态断裂应变统计规律
蔡周峰 等, 高压物理学报, 2025
Antibacterial mechanism of lignin and lignin-based antimicrobial materials in different fields
Li, Kongyan et al., INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023
Cracking and deformation behaviors of overhanging rock: laboratory tests and optical monitoring
JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2025
Impact resistence mechanism and deflection prediction of steel-concrete composite wall under fire exposure
YANG Yaotang et al., EXPLOSION AND SHOCK WAVES, 2024
Powered by
图(15) / 表(2)
计量
  • 文章访问数:  644
  • HTML全文浏览量:  173
  • PDF下载量:  117
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-04-15
  • 修回日期:  2022-09-19
  • 网络出版日期:  2022-09-20
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回