Constant strain-rate loading of liquid-driving expanding ring
-
摘要: 膨胀环实验技术主要包括爆炸膨胀环实验技术和电磁膨胀环实验技术,实验过程中膨胀环的加载应变率在达到峰值后会随着圆环的膨胀而迅速降低,给研究应变率敏感材料的拉伸碎裂带来极大的不便。在前期提出的液压膨胀环实验技术的基础上,发展了一种恒应变率加载技术。首先,从理论上获得了实现金属圆环恒应变率膨胀所需的液压加载曲线的近似表达式;然后,采用有限元流固耦合数值模拟了液压膨胀环装置中1060-O铝环的膨胀碎裂过程,在给定液压加载曲线下,膨胀环的环向应变率在应变率稳定阶段上下波动范围最大不超过20%;并进一步研究了加载曲线对碎裂过程中应变率的影响规律。在液压膨胀环实验装置上对1060-O 铝环开展了膨胀环实验,验证了恒应变率加载技术的可行性。Abstract: The expanding ring experimental technology mainly refers to the explosion expanding ring and the electromagnetic expanding ring experimental technology. During the experiment, the loading strain rate of the expansion ring decreases rapidly with the expansion of the ring after reached the peak value, which creates great inconvenience to the study of tension fragmentation of strain-rate sensitive solids. In this paper, a constant strain-rate loading technology is developed on the basis of the liquid-driving expanding ring experimental technology. Since it is not possible to apply sudden loading to the expansion ring during the experiment, it is assumed that the strain rate of the expansion ring during the expansion process is divided into linear growth stage and stable stage of the strain rate. By reasonably controlling the loading velocity and loading time of the liquid, an approximate expression of the liquid-driving loading curve required to realize the constant strain-rate expansion of the metal ring is deduced theoretically. The tension fragmentation process of the 1060-O aluminum ring under liquid-driving loading is simulated by the fluid-solid coupling numerical simulation. Under the liquid-driving loading curve, the hoop strain rate of the expanding ring fluctuates within a maximum of 20% in the stable stage of the strain rate. Before occurring of the significant necking of the expansion ring, the circumferential velocity of the expansion ring is basically zero, indicating that the expansion ring is under uniform tensile loading and there is no stress wave propagation in the circumferential direction. When the expansion ring is significantly necked, an obvious sudden change in the circumferential velocity will take place, indicateing that a Mott wave from the fracture site propagates to the corresponding position. The influence of the loading curve on the strain rate during the fracture process is further studied. Then an expanding ring experiment was carried out on the 1060-O aluminum ring on the liquid-driving expanding ring experimental device to verify the feasibility of the constant strain rate loading technology.
-
ρ/(kg·m−3) c/(J·kg−1·K−1) β θt/K θm/K 弹性参数 E/GPa µ 2 770 900 0.9 298 1 048 70 0.34 塑性参数 损伤演化参数 A/MPa B/MPa C n m ${\dot \varepsilon _0}/{{\rm{s}}^{ - 1} }$ d1 d2 d3 d4 d5 Gc/(J·m−2) 27 43 0.025 0.34 1 1 0.13 0.13 −1.5 0.01 1 5 700 表 2 加载曲线中的基本物理参数
Table 2. Physical parameters in the loading curve
r0/mm h/mm R/mm $ {\dot \varepsilon _1} $/s−1 t1/μs 17.5 1.5 15 4 000~10 000 40 -
[1] JOHNSON P C, STEIN B A, DAVH R S. Measurement of dynamic plastic flow properties under uniform stress [C] // Symposium on the Dynamic Behavior of Materials. Albuquerque, USA: American Society for Testing and Materials, 1963: 195–198. DOI: 10.1520/STP42030S. [2] NIORDSON F I. A unit for testing materials at high strain rates [J]. Experimental Mechanics, 1965, 5(1): 29–32. DOI: 10.1007/BF02320901. [3] WARNES R H, DUFFEY T A, KARPP R R, et al. Improved technique for determining dynamic material properties using the expanding ring [C] // International Conference on the Meteallurgical Effects of High Strain Rate Deformation and Fabrication. Albuquerque, NM, USA, 1980. [4] GRADY D E, BENSON D A. Fragmentation of metal rings by electromagnetic loading [J]. Experimental Mechanics, 1983, 23(4): 393–400. DOI: 10.1007/BF02330054. [5] GOURDIN W H. Analysis and assessment of electromagnetic ring expansion as a high-strain-rate test [J]. Journal Applied Physics, 1989, 65: 411–422. DOI: 10.1063/1.343121. [6] GOURDIN W H, WEINLAND S L, BOLING R M. Development of the electromagnetically launched expanding ring as a high-strain-rate test technique [J]. Review of Scientific Instruments, 1989, 60(3): 427–432. DOI: 10.1063/1.1140395. [7] 桂毓林, 孙承纬, 李强, 等. 实现金属环动态拉伸的电磁加载技术研究 [J]. 爆炸与冲击, 2006, 26(6): 481–485. DOI: 10.11883/1001-1455(2006)06-0481-05.GUI Y L, SUN C W, LI Q, et al. Experimental studies on dynamic tension of metal ring by electromagnetic loading [J]. Explosion and Shock Waves, 2006, 26(6): 481–485. DOI: 10.11883/1001-1455(2006)06-0481-05. [8] 桂毓林. 电磁加载下金属膨胀环的动态断裂与碎裂研究 [D]. 四川绵阳: 中国工程物理研究院, 2007.GUI Y L. The studies on the dynamic fracture and fragmentation of metal freely expanding ring driven by electromagnetically loading [D]. Mianyang, Sichuan, China: China Academy of Engineering Physics, 2007. [9] 汤铁钢, 李庆忠, 陈永涛, 等. 实现材料高应变率拉伸加载的爆炸膨胀环技术 [J]. 爆炸与冲击, 2009, 29(5): 546–549. DOI: 10.11883/1001-1455(2009)05-0546-04.TANG T G, LI Q Z, CHEN Y T, et al. An improved technique for dynamic tension of metal ring by explosive loading [J]. Explosion and Shock Waves, 2009, 29(5): 546–549. DOI: 10.11883/1001-1455(2009)05-0546-04. [10] 汤铁钢, 桂毓林, 李庆忠, 等. 爆炸膨胀环实验数据处理方法讨论 [J]. 爆炸与冲击, 2010, 30(5): 505–510. DOI: 10.11883/1001-1455(2010)05-0505-06.TANG T G, GUI Y L, LI Q Z, et al. A discussion of data processing techniques for expanding ring tests [J]. Explosion and Shock Waves, 2010, 30(5): 505–510. DOI: 10.11883/1001-1455(2010)05-0505-06. [11] MOTT N F. Fragmentation of shell cases [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1947, 189(1018): 300–308. DOI: 10.1098/rspa.1947.0042. [12] GRADY D E. Fragmentation of rings and shells: the legacy of N. F. Mott [M]. Berlin, Germany: Springer, 2006. [13] KIPP M E, GRADY D E. Dynamic fracture growth and interaction in one dimension [J]. Journal of the Mechanics and Physics of Solids, 1985, 33(4): 399–415. DOI: 10.1016/0022-5096(85)90036-5. [14] 郑宇轩, 周风华, 胡时胜. 一种基于SHPB的冲击膨胀环实验技术 [J]. 爆炸与冲击, 2014, 34(4): 483–488. DOI: 10.11883/1001-1455(2014)04-0483-06.ZHENG Y X, ZHOU F H, HU S S. An SHPB-based experimental technique for dynamic fragmentations of expanding rings [J]. Explosion and Shock Waves, 2014, 34(4): 483–488. DOI: 10.11883/1001-1455(2014)04-0483-06. [15] 张佳, 郑宇轩, 周风华. 立式液压膨胀环实验技术研究 [J]. 宁波大学学报(理工版), 2017, 30(2): 35–38. DOI: 10.3969/j.issn.1001-5132.2017.02.007.ZHANG J, ZHENG Y X, ZHOU F H. Experimental technique for fragmentation of liquid-driven expanding ring [J]. Journal of Ningbo University (Natural Science and Engineering), 2017, 30(2): 35–38. DOI: 10.3969/j.issn.1001-5132.2017.02.007. [16] 李天密, 张佳, 方继松, 等. PMMA膨胀环动态拉伸碎裂实验研究 [J]. 力学学报, 2018, 50(4): 820–827. DOI: 10.6052/0459-1879-18-016.LI T M, ZHANG J, FANG J S, et al. Experimental study of the high velocity expansion and fragmentation of PMMA rings [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 820–827. DOI: 10.6052/0459-1879-18-016. [17] 汤佳妮, 徐便, 郑宇轩, 等. 脆性膨胀环动态拉伸碎裂实验研究 [J]. 爆炸与冲击, 2021, 41(1): 014101. DOI: 10.11883/bzycj-2020-0049.TANG J N, XU B, ZHENG Y X, et al. Experimental study for dynamic fragmentation of brittle expansion rings [J]. Explosion and Shock Waves, 2021, 41(1): 014101. DOI: 10.11883/bzycj-2020-0049. [18] 卢思凡, 张佳, 王珠, 等. 液压膨胀环动态拉伸碎裂的有限元模拟 [J]. 固体力学学报, 2019(4): 372–380. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2019.012.LU S F, ZHANG J, WANG Z, et al. FEM Simulation of dynamic fragmentation of liquid-driving expanding ring [J]. Chinese Journal of Solid Mechanics, 2019(4): 372–380. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2019.012. [19] 张佳. 基于SHPB的液压膨胀环实验研究 [D]. 浙江宁波: 宁波大学, 2017.ZHANG J. Research on experiment of hydraulic expanding ring technology based on SHPB [D]. Ningbo, Zhejiang, China: Ningbo University, 2017.