接触爆炸作用下高聚物复合板毁伤特性分析

赵浩楠 方宏远 赵小华 王高辉

赵浩楠, 方宏远, 赵小华, 王高辉. 接触爆炸作用下高聚物复合板毁伤特性分析[J]. 爆炸与冲击, 2023, 43(5): 052201. doi: 10.11883/bzycj-2022-0161
引用本文: 赵浩楠, 方宏远, 赵小华, 王高辉. 接触爆炸作用下高聚物复合板毁伤特性分析[J]. 爆炸与冲击, 2023, 43(5): 052201. doi: 10.11883/bzycj-2022-0161
ZHAO Haonan, FANG Hongyuan, ZHAO Xiaohua, WANG Gaohui. Analysis on the blast resistance of polymer composite slabs under contact explosions[J]. Explosion And Shock Waves, 2023, 43(5): 052201. doi: 10.11883/bzycj-2022-0161
Citation: ZHAO Haonan, FANG Hongyuan, ZHAO Xiaohua, WANG Gaohui. Analysis on the blast resistance of polymer composite slabs under contact explosions[J]. Explosion And Shock Waves, 2023, 43(5): 052201. doi: 10.11883/bzycj-2022-0161

接触爆炸作用下高聚物复合板毁伤特性分析

doi: 10.11883/bzycj-2022-0161
基金项目: 国家自然科学基金(52009126);河南省高等学校重点科研项目(21A570006);爆破工程湖北省重点实验室开放基金(BL2021-04)
详细信息
    作者简介:

    赵浩楠(1997- ),男,博士研究生,zhaohaonan2020@126.com

    通讯作者:

    赵小华(1991- ),男,博士,副教授,zhaoxh2014@126.com

  • 中图分类号: O382

Analysis on the blast resistance of polymer composite slabs under contact explosions

  • 摘要: 高聚物材料具有成型快和膨胀性能好的特点,该材料与碎石和钢筋的复合结构应用于地基处理和城市道路脱空除险加固,具有明显优势。本文中,设计并制作了高聚物碎石板和钢筋高聚物板,开展了接触爆炸冲击下的试验研究,通过毁伤尺寸和所测冲击波数据探讨了2种板的毁伤特性。基于ANSYS/AUTODYN非线性显式有限元程序,建立了试验中毁伤更严重的钢筋高聚物板的接触爆炸全耦合模型,并通过与试验结果的对比,验证了所建耦合模型的准确性和适用性。参数化分析了钢筋高聚物板对炸药量和板厚的敏感性,并利用多参数非线性回归分析方法,提出了钢筋高聚物板迎爆面和背爆面破坏直径的预测公式。结果表明:接触爆炸作用下,高聚物碎石板的毁伤模式以接触部位的局部震塌冲切破坏为主,除此之还有一些毁伤裂纹;钢筋高聚物板的破坏模式主要是迎爆面爆坑毁伤、背爆面剥落损伤和中心冲切贯穿破坏。高聚物碎石板和钢筋高聚物板对爆炸冲击波都具有良好的衰减作用,有望应用到抗爆炸冲击防护领域。
  • 图  1  高聚物浆液及其反应物

    Figure  1.  Polymer slurries and their reactant

    图  2  玄武岩碎石

    Figure  2.  Basalt gravel

    图  3  高聚物碎石板的几何尺寸和结构形式

    Figure  3.  Dimensions and structural style of a polymer gravel slab

    图  4  钢筋高聚物板的几何尺寸及配筋形式

    Figure  4.  Dimensions and reinforcement layout of a reinforced polymer slab

    图  5  试件成型过程

    Figure  5.  Specimen forming process

    图  6  试验装置

    Figure  6.  Test device

    图  7  不同药量下高聚物碎石板接触爆炸试验结果

    Figure  7.  Contact explosion test results of polymer gravel slabs under different charges

    图  8  高聚物碎石板破坏区直径对比

    Figure  8.  Comparison of diameters of damage zones in polymer gravel slabs

    图  9  高聚物碎石板在不同药量接触爆炸作用下测点 1和 4处空气冲击波压力时程曲线

    Figure  9.  Time history curves of shock wave pressure at measuring points 1 and 4 when the polymer gravel slabs are subjected to contact explosion of different explosive charges

    图  10  不同药量下钢筋高聚物板接触爆炸试验结果

    Figure  10.  Contact explosion test results of reinforced polymer slabs under different charges

    图  11  钢筋高聚物板破坏区直径对比

    Figure  11.  Comparison of the diameters of the damage zones in the reinforced polymer slabs

    图  12  钢筋高聚物板在不同药量接触爆炸作用下测点1和 4处的空气冲击波压力时程曲线

    Figure  12.  Time history curves of shock wave pressure at measuring points 1 and 4 when the reinforced polymer slabs are subjected to contact explosion of different explosive charges

    图  13  RHT本构模型的弹性极限面、破坏面、剩余强度面和子午线的空间分布[23]

    Figure  13.  Spacial distributions of elastic limit surface, fail surface, residual strength surface, and meridians of the RHT constitutive model[23]

    图  14  接触爆炸全耦合模型

    Figure  14.  A fully-coupled model for contact explosion

    图  15  钢筋高聚物板的几何模型

    Figure  15.  A geometrical model for the reinforced polymer slab

    图  16  10 g炸药量接触爆炸作用下钢筋高聚物板破坏情况的模拟结果与试验结果的比较

    Figure  16.  Comparison between the numerically-simulated and experimental results for the damage of the reinforced polymer slab subjected to contact explosion with 10 g explosive

    图  17  不同炸药量接触爆炸作用下6 cm厚钢筋高聚物板破坏情况的数值模拟结果

    Figure  17.  Numerically-simulated damage results for 6-cm-thickness reinforced polymer slabs subjected to contact exlposion with different explosive quantities

    图  18  2 g炸药量接触爆炸作用下不同厚度钢筋高聚物板破坏情况的数值模拟结果

    Figure  18.  Numerically-simulated damge results for reinforced polymer slabs with different thicknesses subjected to contact exlposion with 2 g explosive

    图  19  2 g炸药量接触爆炸作用下不同厚度钢筋高聚物板破坏情况数值模拟侧面剖视图

    Figure  19.  Sectional side views of numerically-simulated damge results for reinforced polymer slabs with different thicknesses subjected to contact exlposion with 2 g explosive

    图  20  接触爆炸作用下钢筋高聚物板的破坏模式

    Figure  20.  Failure modes of reinforced polymer slabs under contact explosions

    图  21  钢筋高聚物板的破坏直径与板厚和炸药量的关系

    Figure  21.  Relation of failure diameters of reinforced polymer slabs with slab thickness and explosive mass

    表  1  试验设置

    Table  1.   Test setup

    试件试件编号试件尺寸药量/g
    高聚物碎石板P150 cm×50 cm×8 cm15
    P250 cm×50 cm×8 cm20
    P350 cm×50 cm×8 cm30
    钢筋高聚物板R150 cm×50 cm×6 cm10
    R250 cm×50 cm×6 cm15
    R350 cm×50 cm×6 cm20
    下载: 导出CSV

    表  2  不同炸药量接触爆炸作用下不同厚度钢筋高聚物板的毁伤系数

    Table  2.   Damage coefficients of reinforced polymer slabs with different thicknesses subjected to contact explosions with different explosive quantities

    w/gKw/gK
    t=6 cmt=8 cmt=10 cmt=6 cmt=8 cmt=10 cm
    10.870.750.75151.001.001.00
    21.000.940.94201.001.001.00
    51.001.001.00251.001.001.00
    101.001.001.00301.001.001.00
    下载: 导出CSV

    表  3  钢筋高聚物板破坏直径经验公式预测结果与数值模拟结果的比较

    Table  3.   Results of the damage diameters predicted by the empirical formulas compared with numerically-simulated ones for reinforced polymer slabs

    板部位w/gt/cm破坏直径/cm误差/%
    数值模拟经验公式预测
    迎爆面10 618.016.6807.33
    15 819.019.2041.07
    201020.520.0642.13
    背爆面10 621.019.2558.31
    15 815.516.4546.15
    201014.015.1137.95
    下载: 导出CSV
  • [1] CHAUDHARI A, GITE V, RAJPUT S, et al. Development of eco-friendly polyurethane coatings based on neem oil polyetheramide [J]. Industrial Crops and Products, 2013, 50: 550–556. DOI: 10.1016/j.indcrop.2013.08.018.
    [2] CHEN J, YIN X J, WANG H, et al. Evaluation of durability and functional performance of porous polyurethane mixture in porous pavement [J]. Journal of Cleaner Production, 2018, 188: 12–19. DOI: 10.1016/j.jclepro.2018.03.297.
    [3] WANG F M, SHI M S, LI H J, et al. Experimental study on the anti-permeability properties of polymer grouting materials [J]. Advanced Materials Research, 2011, 284/285/286: 1952–1955. DOI: 10.4028/www.scientific.net/AMR.284-286.1952.
    [4] FANG H Y, SU Y J, DU X M, et al. Experimental and numerical investigation on repairing effect of polymer grouting for settlement of high-speed railway unballasted track [J]. Applied Sciences, 2019, 9(21): 4496. DOI: 10.3390/app9214496.
    [5] 刁龙. 高速公路软土路基不均匀沉降处治方法及效果评价 [J]. 交通世界, 2021(30): 106–107. DOI: 10.16248/j.cnki.11-3723/u.2021.30.049.

    DIAO L. Treatment method and effect evaluation of uneven settlement of expressway soft soil subgrade [J]. Transpoworld, 2021(30): 106–107. DOI: 10.16248/j.cnki.11-3723/u.2021.30.049.
    [6] 徐建国, 陈志豪, 王壬. 埋地排水管道高聚物注浆修复受力特性分析 [J]. 岩土工程学报, 2021, 43(1): 121–129. DOI: 10.11779/CJGE202101014.

    XU J G, CHEN Z H, WANG R. Mechanical characteristics of buried drainage pipes repaired by polymer grouting technology [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 121–129. DOI: 10.11779/CJGE202101014.
    [7] YATES B. Mechanics of cellular plastics [J]. Composites, 1982, 13(4): 362–363. DOI: 10.1016/0010-4361(82)90143-4.
    [8] 王海福, 冯顺山. 爆炸载荷下聚氨酯泡沫材料中冲击波压力特性 [J]. 爆炸与冲击, 1999, 19(1): 78–83.

    WANG H F, FENG S S. Properties of shock pressure caused by explosion loads in polyurethane foam [J]. Explosion and Shock Waves, 1999, 19(1): 78–83.
    [9] 徐全军, 唐丙文, 李裕春. 聚氨酯泡沫材料的隔爆作用 [J]. 解放军理工大学学报(自然科学版), 2007, 8(1): 77–81. DOI: 10.7666/j.issn.1009-3443.20070117.

    XU Q J, TANG B W, LI Y C. Polyurethane foam material’s gap effects [J]. Journal of PLA University of Science and Technology, 2007, 8(1): 77–81. DOI: 10.7666/j.issn.1009-3443.20070117.
    [10] LIU S C, ZHAO X H, FANG H Y, et al. Damage characteristics of polymer plates under the impact of the near-field and contact underwater explosion [J]. Advances in Materials Science and Engineering, 2021, 2021: 5957847. DOI: 10.1155/2021/5957847.
    [11] LIU Z D, ZHAO X H, FANG H Y, et al. Experimental study on the damage characteristics of polymer slabs subjected to air contact and close-in explosions [J]. Advances in Materials Science and Engineering, 2021, 2021: 2825062. DOI: 10.1155/2021/2825062.
    [12] 张勇. 聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析 [J]. 爆炸与冲击, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.

    ZHANG Y. Testing and numerical simulation of the antiknock energy absorption of polyurethane foam aluminum composite structure [J]. Explosion and Shock Waves, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.
    [13] GARGANO A, DONOUGH M, DAS R, et al. Damage to fibre-polymer laminates caused by surface contact explosive charges [J]. Composites Part B: Engineering, 2020, 197: 108162. DOI: 10.1016/j.compositesb.2020.108162.
    [14] KELLY M, ARORA H, DEAR J P. The comparison of various foam polymer types in composite sandwich panels subjected to full scale air blast loading [J]. Procedia Engineering, 2014, 88: 48–53. DOI: 10.1016/j.proeng.2014.11.125.
    [15] 曾祥, 刘彦, 许泽建, 等. 爆炸载荷作用下玻璃钢/硬质聚氨酯泡沫夹层结构抗冲击性能实验研究 [J]. 北京理工大学学报, 2021, 41(11): 1145–1153. DOI: 10.15918/j.tbit1001-0645.2021.036.

    ZENG X, LIU Y, XU Z J, et al. Experimental study on impact resistance of Glass Fiber Reinforced Plastic/Rigid Polyurethane Foam sandwich structures under air blast loading [J]. Transactions of Beijing Institute of Technology, 2021, 41(11): 1145–1153. DOI: 10.15918/j.tbit1001-0645.2021.036.
    [16] 邹广平, 孙杭其, 唱忠良, 等. 聚氨酯/钢夹芯结构爆炸载荷下动力学响应的数值模拟 [J]. 爆炸与冲击, 2015, 35(6): 907–912. DOI: 10.11883/1001-1455(2015)06-0907-06.

    ZOU G P, SUN H Q, CHANG Z L, et al. Numerical simulation on dynamic response of polyurethane/steel sandwich structure under blast loading [J]. Explosion and Shock Waves, 2015, 35(6): 907–912. DOI: 10.11883/1001-1455(2015)06-0907-06.
    [17] LI M J, DU M R, WANG F M, et al. Study on the mechanical properties of polyurethane (PU) grouting material of different geometric sizes under uniaxial compression [J]. Construction and Building Materials, 2020, 259: 119797. DOI: 10.1016/j.conbuildmat.2020.119797.
    [18] 刘志远. 高聚物注浆材料工程特性的试验研究 [D]. 郑州: 郑州大学, 2007: 22–30.
    [19] 石明生. 高聚物注桨材料特性与堤坝定向劈裂注桨机理研究 [D]. 辽宁大连: 大连理工大学, 2011: 22–61.
    [20] 王娟, 方宏远, 余自森, 等. 高聚物碎石混合料单轴受压性能试验研究 [J]. 建筑材料学报, 2019, 22(2): 320–326. DOI: 10.3969/j.issn.1007-9629.2019.02.024.

    WANG J, FANG H Y, YU Z S, et al. Experimental study on uniaxial compressive properties of polymer gravel mixtures [J]. Journal of Building Materials, 2019, 22(2): 320–326. DOI: 10.3969/j.issn.1007-9629.2019.02.024.
    [21] ZHAO X H, WANG G H, LU W B, et al. Damage features of RC slabs subjected to air and underwater contact explosions [J]. Ocean engineering, 2018, 147: 531–545. DOI: 10.1016/j.oceaneng.2017.11.007.
    [22] WANG Z Y, DU M R, FANG H Y, et al. Influence of different corrosion environments on mechanical properties of a roadbed rehabilitation polyurethane grouting material under uniaxial compression [J]. Construction and Building Materials, 2021, 301: 124092. DOI: 10.1016/J.CONBUILDMAT.2021.124092.
    [23] 王高辉. 极端荷载作用下混凝土重力坝的动态响应行为和损伤机理[D]. 天津: 天津大学, 2014: 163–167.
    [24] 廖真, 唐德高, 李治中, 等. 近地面空中爆炸马赫反射数值模拟研究 [J]. 振动与冲击, 2020, 39(5): 164–169,176. DOI: 10.13465/j.cnki.jvs.2020.05.022.

    LIAO Z, TANG D G, LI Z Z, et al. Numerical simulation for Mach reflection in air explosion near ground [J]. Journal of Vibration and Shock, 2020, 39(5): 164–169,176. DOI: 10.13465/j.cnki.jvs.2020.05.022.
    [25] 吴红波, 邢化岛, 缪志军, 等. 乳化炸药聚能射流侵彻靶板的数值仿真 [J]. 工程爆破, 2016, 22(1): 68–72. DOI: 10.3969/j.issn.1006-7051.2016.01.015.

    WU H B, XING H D, MIAO Z J, et al. Numerical simulation of shaped charge jet penetrating on target by emulsion explosive [J]. Engineering Blasting, 2016, 22(1): 68–72. DOI: 10.3969/j.issn.1006-7051.2016.01.015.
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  151
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 修回日期:  2022-06-21
  • 网络出版日期:  2022-06-24
  • 刊出日期:  2023-05-05

目录

    /

    返回文章
    返回