高瓦斯低透气性煤层聚能爆破增透机制

李向上 郑俊杰 宋彦琦 郭德勇 马宏发 王嘉敏

李向上, 郑俊杰, 宋彦琦, 郭德勇, 马宏发, 王嘉敏. 高瓦斯低透气性煤层聚能爆破增透机制[J]. 爆炸与冲击, 2023, 43(5): 055201. doi: 10.11883/bzycj-2022-0164
引用本文: 李向上, 郑俊杰, 宋彦琦, 郭德勇, 马宏发, 王嘉敏. 高瓦斯低透气性煤层聚能爆破增透机制[J]. 爆炸与冲击, 2023, 43(5): 055201. doi: 10.11883/bzycj-2022-0164
LI Xiangshang, ZHENG Junjie, SONG Yanqi, GUO Deyong, MA Hongfa, WANG Jiamin. On infiltration enhancement mechanism of shaped charge blasting in high gas and low permeability coal seam[J]. Explosion And Shock Waves, 2023, 43(5): 055201. doi: 10.11883/bzycj-2022-0164
Citation: LI Xiangshang, ZHENG Junjie, SONG Yanqi, GUO Deyong, MA Hongfa, WANG Jiamin. On infiltration enhancement mechanism of shaped charge blasting in high gas and low permeability coal seam[J]. Explosion And Shock Waves, 2023, 43(5): 055201. doi: 10.11883/bzycj-2022-0164

高瓦斯低透气性煤层聚能爆破增透机制

doi: 10.11883/bzycj-2022-0164
基金项目: 国家重点研发计划(2018YFC0808402);国家自然科学基金联合基金(U1704242);中国博士后科学基金(2021M701541);中国煤炭科工集团有限公司科技创新创业资金专项重点项目(2019-2-ZD001)
详细信息
    作者简介:

    李向上(1991- ),男,博士,助理研究员,xiangshang_li@126.com

    通讯作者:

    王嘉敏(1994- ),女,博士,助理研究员,jasmin1029@163.com

  • 中图分类号: O389;TD235.21

On infiltration enhancement mechanism of shaped charge blasting in high gas and low permeability coal seam

  • 摘要: 为解决常规爆破增透煤层过程中煤体粉碎严重而裂隙发育不佳的难题,进行了聚能爆破煤层增透技术研究。开展了聚能爆破与常规爆破的混凝土致裂实验,对比分析了爆破后混凝土裂隙开裂程度,同时利用超动态应变仪采集了应变砖应变随时间变化的数据。利用ANSYS/LS-DYNA数值模拟再现了聚能罩压垮运移、聚能射流侵彻混凝土的过程,对比分析了聚能爆破与常规爆破应力波传播特征及内部裂隙扩展过程。最后在平煤十矿进行了聚能爆破与常规爆破的煤层增透试验,对比了爆破后抽采孔瓦斯的体积分数。研究结果表明:聚能爆破后,聚能方向上混凝土的裂纹宽度为1.1 cm,垂直聚能方向上混凝土的裂纹宽度为0.4 cm,而常规爆破后混凝土形成的4条主裂纹的宽度均为约0.3 cm。数值模拟结果显示:聚能爆破混凝土的粉碎区呈“哑铃型”,常规爆破混凝土的粉碎区呈圆形,且聚能爆破混凝土的粉碎区面积小于常规爆破的;而裂隙区呈“纺锤型”,且聚能爆破混凝土的裂隙区面积大于常规爆破的,说明聚能爆破技术可有效解决爆破增透过程中煤体粉碎区严重而裂隙区发育不佳的难题,更有利于致裂增透高瓦斯低透气性煤层。现场试验结果同样显示聚能爆破后瓦斯抽采浓度明显高于常规爆破。可见,聚能爆破将更多的能量用在了煤层致裂过程,减小了煤体粉碎区,可有效解决常规爆破致裂煤层时遇到的煤体粉碎严重而裂隙扩展不足的难题。
  • 图  1  爆破药卷平面结构

    Figure  1.  Plane structure of blasting charge coil

    图  2  爆破模型中应变砖的布置示意图

    Figure  2.  Layout of strain bricks in blasting model

    图  3  聚能药管制作过程

    Figure  3.  The production of cumulative explosive pipe

    图  4  爆破后试件破坏情况

    Figure  4.  Photos of specimen failure after blasting

    图  5  常规爆破时各应变砖的应变随时间的变化

    Figure  5.  The strain-time curves measured from strain gauge in conventional blasting

    图  6  聚能爆破时各应变砖的应变随时间的变化

    Figure  6.  The strain-time curves measured from strain gauge in cumulative blasting

    图  7  混凝土的聚能爆破数值模型

    Figure  7.  The model of cumulative blasting for concrete

    图  8  聚能射流形成及运移过程

    Figure  8.  The formation and migration process of shaped charge jet

    图  9  聚能爆破致裂混凝土的过程

    Figure  9.  Fracture expansion process under the shaped charge blasting

    图  10  常规爆破致裂混凝土的过程

    Figure  10.  Fracture expansion process under the conventional blasting

    图  11  聚能爆破与常规爆破后裂隙扩展发育对比图

    Figure  11.  Propagation characteristics of cracks around blasting borehole

    图  12  三级乳化炸药及聚能药管

    Figure  12.  Tertiary emulsion explosive and shaped charge tube

    图  13  聚能爆破装药及封孔结构

    Figure  13.  The structure of shaped charge blasting in hole

    图  14  爆破钻孔方案

    Figure  14.  The specific blasting drilling scheme

    图  15  爆破前后各考察孔内平均瓦斯体积分数

    Figure  15.  The average volume fraction of gas in each hole is investigated before and after blasting

  • [1] 刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及“十四五”发展方向 [J]. 煤炭学报, 2021, 46(1): 1–15. DOI: 10.13225/j.cnki.jccs.2021.0042.

    LIU F, CAO W J, ZHANG J M, et al. Current technological innovation and development direction of the 14th five-year plan period in China coal industry [J]. Journal of China Coal Society, 2021, 46(1): 1–15. DOI: 10.13225/j.cnki.jccs.2021.0042.
    [2] CAO Y X, ZHANG J S, ZHAI H, et al. CO2 gas fracturing: A novel reservoir stimulation technology in low permeability gassy coal seams [J]. Fuel, 2017, 203: 197–207. DOI: 10.1016/j.fuel.2017.04.053.
    [3] 梁运涛, 曾文. 激波诱导瓦斯爆炸的动力学特性及影响因素 [J]. 爆炸与冲击, 2010, 30(4): 370–376. DOI: 10.11883/1001-1455(2010)04-0370-07.

    LIANG Y T, ZENG W. Kinetic characteristics and influencing factors of gas explosion induced by shock wave [J]. Explosion and Shock Waves, 2010, 30(4): 370–376. DOI: 10.11883/1001-1455(2010)04-0370-07.
    [4] 聂百胜, 马延崑, 何学秋, 等. 煤与瓦斯突出微观机理探索研究 [J]. 中国矿业大学学报, 2022, 51(2): 207–220. DOI: 10.13247/j.cnki.jcumt.001384.

    NIE B S, MA Y K, HE X Q, et al. Micro-scale mechanism of coal and gas outburst: a preliminary study [J]. Journal of China University of Mining and Technology, 2022, 51(2): 207–220. DOI: 10.13247/j.cnki.jcumt.001384.
    [5] 郑凯歌. 碎软低透煤层底板梳状长钻孔分段水力压裂增透技术研究 [J]. 采矿与安全工程学报, 2020, 37(2): 272–281. DOI: 10.13545/j.cnki.jmse.2020.02.007.

    ZHENG K G. Permeability improving technology by sectional hydraulic fracturing for comb-like long drilling in floor of crushed and soft coal seam with low permeability [J]. Journal of Mining & Safety Engineering, 2020, 37(2): 272–281. DOI: 10.13545/j.cnki.jmse.2020.02.007.
    [6] ZHOU L, ZHENG X L, LU Y Y, et al. Fracture pattern and Caprock integrity analyses via hydraulic fracturing for CO2 enhanced coal bed methane [J]. Engineering Fracture Mechanics, 2020, 228: 106894. DOI: 10.1016/j.engfracmech.2020.106894.
    [7] 罗勇, 沈兆武. 多面聚能射孔压裂排放瓦斯的研究 [J]. 工程爆破, 2005, 11(1): 68–71. DOI: 10.3969/j.issn.1006-7051.2005.01.018.

    LUO Y, SHEN Z W. Study on methane drainage using technique of multi-perforating and fracturing [J]. Engineering Blasting, 2005, 11(1): 68–71. DOI: 10.3969/j.issn.1006-7051.2005.01.018.
    [8] 罗勇, 沈兆武, 崔晓荣. 多面聚能线性切割器的研究 [J]. 爆破, 2006, 23(2): 93–96,101. DOI: 10.3963/j.issn.1001-487X.2006.02.028.

    LUO Y, SHEN Z W, CUI X R. Application of multiple linear cavity effect cutter [J]. Blasting, 2006, 23(2): 93–96,101. DOI: 10.3963/j.issn.1001-487X.2006.02.028.
    [9] 罗勇, 沈兆武. 切缝药包岩石定向断裂爆破的研究 [J]. 振动与冲击, 2006, 25(4): 155–158. DOI: 10.3969/j.issn.1000-3835.2006.04.042.

    LUO Y, SHEN Z W. Study on the directional fracture controlled blasting with slit-charge in rock [J]. Journal of Vibration and Shock, 2006, 25(4): 155–158. DOI: 10.3969/j.issn.1000-3835.2006.04.042.
    [10] 罗勇, 沈兆武. 聚能药包在岩石定向断裂爆破中的应用研究 [J]. 爆炸与冲击, 2006, 26(3): 250–255. DOI: 10.11883/1001-1455(2006)03-0250-06.

    LUO Y, SHEN Z W. Application study on directional fracture controlled blasting with shaped charge in rock [J]. Explosion and Shock Waves, 2006, 26(3): 250–255. DOI: 10.11883/1001-1455(2006)03-0250-06.
    [11] 罗勇, 沈兆武, 崔晓荣. 线性聚能切割器的应用研究 [J]. 含能材料, 2006, 14(3): 236–240. DOI: 10.3969/j.issn.1006-9941.2006.03.021.

    LUO Y, SHEN Z W, CUI X R. Application study on blasting with linear cumulative cutting charge in rock [J]. Chinese Journal of Energetic Materials, 2006, 14(3): 236–240. DOI: 10.3969/j.issn.1006-9941.2006.03.021.
    [12] 杨仁树, 左进京, 杨立云, 等. 爆炸应力波作用下动、静裂纹相互作用的实验研究 [J]. 爆炸与冲击, 2017, 37(6): 952–958. DOI: 10.11883/1001-1455(2017)06-0952-07.

    YANG R S, ZUO J J, YANG L Y, et al. Dynamic and static crack interaction under action of explosive stress wave [J]. Explosion and Shock Waves, 2017, 37(6): 952–958. DOI: 10.11883/1001-1455(2017)06-0952-07.
    [13] 杨仁树, 王雁冰, 岳中文, 等. 定向断裂双孔爆破裂纹扩展的动态行为 [J]. 爆炸与冲击, 2013, 33(6): 631–637. DOI: 10.11883/1001-1455(2013)06-0631-07.

    YANG R S, WANG Y B, YUE Z W, et al. Dynamic behaviors of crack propagation in directional fracture blasting with two holes [J]. Explosion and Shock Waves, 2013, 33(6): 631–637. DOI: 10.11883/1001-1455(2013)06-0631-07.
    [14] MENG N K, CHEN Y, BAI J B, et al. Numerical simulation of directional fracturing by shaped charge blasting [J]. Energy Science & Engineering, 2020, 8(5): 1824–1839. DOI: 10.1002/ese3.635.
    [15] YIN Y, SUN Q, ZOU B P, et al. Numerical study on an innovative shaped charge approach of rock blasting and the timing sequence effect in microsecond magnitude [J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4523–4542. DOI: 10.1007/s00603-021-02516-w.
    [16] HE C L, YANG J. Experimental and numerical investigations of dynamic failure process in rock under blast loading [J]. Tunnelling and Underground Space Technology, 2019, 83: 552–564. DOI: 10.1016/j.tust.2018.08.047.
    [17] 刘健, 刘泽功, 高魁, 等. 深孔定向聚能爆破增透机制模拟试验研究及现场应用 [J]. 岩石力学与工程学报, 2014, 33(12): 2490–2496. DOI: 10.13722/j.cnki.jrme.2014.12.014.

    LIU J, LIU Z G, GAO K, et al. Experimental study and application of directional focused energy blasting in deep boreholes [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2490–2496. DOI: 10.13722/j.cnki.jrme.2014.12.014.
    [18] 高魁, 刘泽功, 刘健, 等. 定向聚能爆破弱化综掘工作面逆断层应用研究 [J]. 岩石力学与工程学报, 2019, 38(7): 1408–1419. DOI: 10.13722/j.cnki.jrme.2018.1447.

    GAO K, LIU Z G, LIU J, et al. Application research of directional cumulative blasting for weakening reverse faults in fully mechanized excavation face [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1408–1419. DOI: 10.13722/j.cnki.jrme.2018.1447.
    [19] 康勇, 郑丹丹, 粟登峰, 等. 水射流切槽定向聚能爆破模型及数值模拟研究 [J]. 振动与冲击, 2015, 34(9): 182–188. DOI: 10.13465/j.cnki.jvs.2015.09.033.

    KANG Y, ZHENG D D, SU D F, et al. Model of directional shaped blasting assisted with water jet and its numerical simulation [J]. Journal of Vibration and Shock, 2015, 34(9): 182–188. DOI: 10.13465/j.cnki.jvs.2015.09.033.
    [20] 郭德勇, 赵杰超, 张超, 等. 煤层深孔聚能爆破控制孔作用机制研究 [J]. 岩石力学与工程学报, 2018, 37(4): 919–930. DOI: 10.13722/j.cnki.jrme.2017.1038.

    GUO D Y, ZHAO J C, ZHAO C, et al. Mechanism of control hole on coal crack initiation and propagation under deep-hole cumulative blasting in coal seam [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 919–930. DOI: 10.13722/j.cnki.jrme.2017.1038.
    [21] 郭德勇, 吕鹏飞, 单智勇, 等. 瓦斯抽放煤层增透深孔聚能爆破钻孔参数 [J]. 北京科技大学学报, 2013, 35(1): 16–20. DOI: 10.13374/j.issn1001-053x.2013.01.006.

    GUO D Y, LV P F, SHAN Z Y, et al. Drilling parameters of deep-hole cumulative blasting to improve coal seam permeability in gas drainage [J]. Journal of University of Science and Technology Beijing, 2013, 35(1): 16–20. DOI: 10.13374/j.issn1001-053x.2013.01.006.
    [22] 郭德勇, 张超, 李柯, 等. 松软低透煤层深孔微差聚能爆破致裂机理 [J]. 煤炭学报, 2021, 46(8): 2583–2592. DOI: 10.13225/j.cnki.jccs.2020.1843.

    GUO D Y, ZHANG C, LI K, et al. Mechanism of millisecond-delay detonation on coal cracking under deep-hole cumulative blasting in soft and low permeability coal seam [J]. Journal of China Coal Society, 2021, 46(8): 2583–2592. DOI: 10.13225/j.cnki.jccs.2020.1843.
    [23] 宋彦琦, 李向上, 郭德勇. 多孔同段聚能爆破煤层增透数值模拟及应用 [J]. 煤炭学报, 2018, 43(S2): 469–474. DOI: 10.13225/j.cnki.jccs.2018.1095.

    SONG Y Q, LI X S, GUO D Y. Numerical simulation of multi-hole and same delay time of cumulative blasting in coal seam and its application [J]. Journal of China Coal Society, 2018, 43(S2): 469–474. DOI: 10.13225/j.cnki.jccs.2018.1095.
    [24] 褚怀保, 杨小林, 余永强, 等. 煤体爆破模拟材料选择试验研究 [J]. 煤炭科学技术, 2010, 38(5): 31–33. DOI: 10.13199/j.cst.2010.05.38.chuhb.032.

    CHU H B, YANG X L, YU Y Q, et al. Test and research on similar material selection for coal blasting [J]. Coal Science and Technology, 2010, 38(5): 31–33. DOI: 10.13199/j.cst.2010.05.38.chuhb.032.
    [25] 李裕春, 时党勇, 赵远. ANSYS 10.0/LS-DYNA基础理论与工程实践 [M]. 北京: 中国水利水电出版社, 2006: 88–95.
    [26] 邓永兴, 张中雷, 管志强, 等. 螺旋管聚能药包根底光面爆破机理研究及应用 [J]. 爆炸与冲击, 2020, 40(1): 015201. DOI: 10.11883/bzycj-2018-0495.

    DENG Y X, ZHANG Z L, GUAN Z Q, et al. Research and application of root smooth blasting mechanism of shaped charge in spiral tube [J]. Explosion and Shock Waves, 2020, 40(1): 015201. DOI: 10.11883/bzycj-2018-0495.
  • 加载中
图(15)
计量
  • 文章访问数:  503
  • HTML全文浏览量:  110
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-09-27
  • 网络出版日期:  2022-10-19
  • 刊出日期:  2023-05-05

目录

    /

    返回文章
    返回