爆炸冲击波作用下人体肺部的损伤

王波 杨剑波 姚李刚 何洋扬 吕华溢 唐吉思 许述财 张金换

王波, 杨剑波, 姚李刚, 何洋扬, 吕华溢, 唐吉思, 许述财, 张金换. 爆炸冲击波作用下人体肺部的损伤[J]. 爆炸与冲击, 2022, 42(12): 122201. doi: 10.11883/bzycj-2022-0173
引用本文: 王波, 杨剑波, 姚李刚, 何洋扬, 吕华溢, 唐吉思, 许述财, 张金换. 爆炸冲击波作用下人体肺部的损伤[J]. 爆炸与冲击, 2022, 42(12): 122201. doi: 10.11883/bzycj-2022-0173
WANG Bo, YANG Jianbo, YAO Ligang, HE Yangyang, LYU Huayi, TANG Jisi, XU Shucai, ZHANG Jinhuan. Blast injuries to human lung induced by blast shock waves[J]. Explosion And Shock Waves, 2022, 42(12): 122201. doi: 10.11883/bzycj-2022-0173
Citation: WANG Bo, YANG Jianbo, YAO Ligang, HE Yangyang, LYU Huayi, TANG Jisi, XU Shucai, ZHANG Jinhuan. Blast injuries to human lung induced by blast shock waves[J]. Explosion And Shock Waves, 2022, 42(12): 122201. doi: 10.11883/bzycj-2022-0173

爆炸冲击波作用下人体肺部的损伤

doi: 10.11883/bzycj-2022-0173
基金项目: 国家自然科学基金(51305223)
详细信息
    作者简介:

    王 波(1986- ),男,博士,副研究员,wangbo_201@126.com

    通讯作者:

    许述财(1978- ),男,博士,副研究员,xushc@mail.tsinghua.edu.cn

  • 中图分类号: O389

Blast injuries to human lung induced by blast shock waves

  • 摘要: 为探究肺部爆炸伤的致伤机制与评价指标,构建了人体-爆炸流场有限元模型,通过与爆炸事故中人员损伤情况比对,验证了模型的有效性。共进行39个爆炸工况的数值模拟,通过改变爆炸当量与距离,使得胸部受到不同量级爆炸载荷作用,肺部损伤等级从无损伤到严重损伤。通过分析爆炸流场分布、胸腔动力学响应、肺部应力分布等阐明肺部爆炸伤的力学机制。基于人体有限元模型输出的损伤响应,提出肺部爆炸伤的评价指标。研究结果表明:在爆炸载荷作用下,胸前壁高速撞击胸腔脏器,导致肺部产生应力波。随后在惯性作用下,胸前壁持续挤压胸腔脏器,并造成胸腔变形。应力波是造成肺部损伤的主要原因,胸腔变形挤压肺部造成的损伤风险较低。肺部损伤集中在靠近胸前壁及心脏的区域。胸骨速度峰值和胸骨加速度峰值可作为肺部爆炸伤的评价指标。胸部压缩量及黏性响应系数不能反映应力波对肺部造成的损伤,不适合评价肺部爆炸伤。
  • 图  1  有限元模型

    Figure  1.  Finite element model

    图  2  Axelsson胸部模型[9]

    Figure  2.  The Axelsson model of the thorax[9]

    图  3  不同爆炸距离工况下胸部爆炸载荷的演化

    Figure  3.  Evolution of blast load on the thorax at different explosion distances

    图  4  爆炸流场压力云图

    Figure  4.  Pressure contours in blast field at different times

    图  5  胸骨及胸椎T8速度曲线

    Figure  5.  Velocity-time histories of sternum and thoracic vertebra T8

    图  6  胸骨及胸椎T8位移曲线

    Figure  6.  Displacement-time histories of sternum and thoracic vertebra T8

    图  7  不同时刻肺部压力云图

    Figure  7.  Pressure contours of the lung at different times

    图  8  重度损伤单元压力峰值时间统计

    Figure  8.  Statistics of pressure peak times of severe damaged elements

    图  9  胸部压缩量与胸壁速度预测值的关系曲线

    Figure  9.  Relationship between thoracic deflection and chest wall velocity predictor

    图  10  黏性响应系数与胸壁速度预测值的关系曲线

    Figure  10.  Relationship between viscous criterion and chest wall velocity predictor

    图  11  胸骨速度峰值与胸壁速度预测值的关系曲线

    Figure  11.  Relationship between sternum velocity and chest wall velocity predictor

    图  12  胸骨加速度峰值与胸壁速度预测值的关系曲线

    Figure  12.  Relationship between sternum acceleration and chest wall velocity predictor

    表  1  胸壁速度预测值与损伤等级的关系[9]

    Table  1.   Injury level as a function of chest wall velocity predictor[9]

    损伤等级vcwp/(m∙s−1)
    无损伤0.0~3.6
    轻微伤至轻伤3.7~7.5
    轻伤至中度损伤4.3~9.8
    中度损伤至重度损伤7.5~16.9
    致死率高于50%>12.8
    下载: 导出CSV
  • [1] OWENS B D, KRAGH J F, WENKE J C, et al. Combat wounds in operation Iraqi freedom and operation enduring freedom [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2008, 64(2): 295–299. DOI: 10.1097/TA.0b013e318163b875.
    [2] ARGYROS G J. Management of primary blast injury [J]. Toxicology, 1997, 121(1): 105–115. DOI: 10.1016/s0300-483x(97)03659-7.
    [3] 蒋建新, 曾灵. 肺爆炸冲击伤机制与防护研究进展 [J]. 陆军军医大学学报, 2022, 44(5): 395–398. DOI: 10.16016/j.2097-0927.202111179.

    JIANG J X, ZENG L. Advance of protection and mechanism of lung blast injury [J]. Journal of Army Medical University, 2022, 44(5): 395–398. DOI: 10.16016/j.2097-0927.202111179.
    [4] 黄建钊, 杨志焕, 王正国, 等. 狗冲击伤复合破片伤时肺的形态学改变 [J]. 第三军医大学学报, 1992, 14(2): 155–158. DOI: 10.3321/j.issn:1000-5404.1992.02.018.

    HUANG J Z, YANG Z H, WANG Z G, et al. Morphological changes of the lungs after blast, shell-fragment, and blast-fragment combined injuries in dogs [J]. Journal of Third Military Medical University, 1992, 14(2): 155–158. DOI: 10.3321/j.issn:1000-5404.1992.02.018.
    [5] BOUTILLIER J, MEZZO S, DECK C, et al. Chest response assessment of post-mortem swine under blast loadings [J]. Journal of Biomechanics, 2017, 65: 169–175. DOI: 10.1016/j.jbiomech.2017.10.012.
    [6] 周杰, 陶钢, 王健. 爆炸冲击波对肺损伤的数值模拟 [J]. 爆炸与冲击, 2012, 32(4): 418–422. DOI: 10.11883/1001-1455(2012)04-0418-05.

    ZHOU J, TAO G, WANG J. Numerical simulation of lung injury induced by shock wave [J]. Explosion and Shock Waves, 2012, 32(4): 418–422. DOI: 10.11883/1001-1455(2012)04-0418-05.
    [7] 周杰, 陶钢, 潘保青, 等. 爆炸冲击波对人体胸部创伤机理的有限元方法研究 [J]. 爆炸与冲击, 2013, 33(3): 315–320. DOI: 10.11883/1001-1455(2013)03-0315-06.

    ZHOU J, TAO G, PAN B Q, et al. Mechanism of blast trauma to human thorax: a finite element study [J]. Explosion and Shock Waves, 2013, 33(3): 315–320. DOI: 10.11883/1001-1455(2013)03-0315-06.
    [8] BOWEN I G, FLETCHER E R, RICHMOND D R. Estimate of man’s tolerance to the direct effects of air blast: DASA-2113 [R]. Washington, USA: Defense Atomic Support Agency, 1968.
    [9] AXELSSON H, YELVERTON J T. Chest wall velocity as a predictor of nonauditory blast injury in a complex wave environment [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1996, 40(3): 31S–37S. DOI: 10.1097/00005373-199603001-00006.
    [10] STUHMILLER J H, HO K H H, VORST M J V, et al. A model of blast overpressure injury to the lung [J]. Journal of Biomechanics, 1996, 29(2): 227–234. DOI: 10.1016/0021-9290(95)00039-9.
    [11] US Department of Justice. Public safety bomb suit standard: NIJ standard-0117.01 [S]. Washington, USA: National Institute of Justice, 2016.
    [12] VAWTER D L. A finite element model for macroscopic deformation of the lung [J]. Journal of Biomechanical Engineering, 1980, 102(1): 1–7. DOI: 10.1115/1.3138193.
    [13] 王波, 何洋扬, 聂冰冰, 等. 底部爆炸条件下车内乘员损伤风险仿真评估 [J]. 清华大学学报(自然科学版), 2020, 60(11): 902–909. DOI: 10.16511/j.cnki.qhdxxb.2020.26.021.

    WANG B, HE Y Y, NIE B B, et al. Numerical investigation of vehicle occupant injury risks in underbody blast events [J]. Journal of Tsinghua University (Science and Technology), 2020, 60(11): 902–909. DOI: 10.16511/j.cnki.qhdxxb.2020.26.021.
    [14] HAMIT H F, BULLUCK M H, FRUMSON G, et al. Air blast injuries: report of a case [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1965, 5(1): 117–124. DOI: 10.1097/00005373-196501000-00012.
    [15] 罗伟, 缑元斌. 用现行人体《重标》、《轻标》鉴定肺损伤存在问题及对策 [C]//中国法医学会全国第十五次法医临床学学术研讨会论文集. 大连: 中国法医学会, 2012: 38−39.
    [16] North Atlantic Treaty Organization. Procedures for evaluating the protection level of armoured vehicles for mine threat: AEP-55 VOL2—2011 [S]. Brussels, Belgium: Allied Engineering Publication, 2011.
    [17] 曾衍钧. 离体肺组织内应力波传播速度的测定 [J]. 中国应用生理学杂志, 1989, 5(2): 237–240. DOI: 10.13459/j.cnki.cjap.1989.02.026.

    ZENG Y J. An in vitro measurement of stress wave velocities in the lung [J]. Chinese Journal of Applied Physiology, 1989, 5(2): 237–240. DOI: 10.13459/j.cnki.cjap.1989.02.026.
    [18] GOSS S A, JOHNSTON R L, DUNN F. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues [J]. Journal of the Acoustical Society of America, 1978, 64(2): 423–457. DOI: 10.1121/1.382016.
    [19] GREER A D. Numerical modeling for the prediction of primary blast injury to the lung [D]. Waterloo, Canada: University of Waterloo, 2006: 125−126.
    [20] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 汽车正面碰撞的乘员保护: GB 11551—2014 [S]. 北京: 中国标准出版社, 2015.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. The protection of the occupants in the event of a frontal collision for motor vehicle: GB 11551—2014 [S]. Beijing, China: Standards Press of China, 2015.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  619
  • HTML全文浏览量:  192
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 修回日期:  2022-07-06
  • 网络出版日期:  2022-08-17
  • 刊出日期:  2022-12-08

目录

    /

    返回文章
    返回