破膜压力对氢-空气预混气体燃爆特性的影响

杜赛枫 张凯 陈昊 郭进 段在鹏

杜赛枫, 张凯, 陈昊, 郭进, 段在鹏. 破膜压力对氢-空气预混气体燃爆特性的影响[J]. 爆炸与冲击, 2023, 43(2): 025401. doi: 10.11883/bzycj-2022-0174
引用本文: 杜赛枫, 张凯, 陈昊, 郭进, 段在鹏. 破膜压力对氢-空气预混气体燃爆特性的影响[J]. 爆炸与冲击, 2023, 43(2): 025401. doi: 10.11883/bzycj-2022-0174
DU Saifeng, ZHANG Kai, CHEN Hao, GUO Jin, DUAN Zaipeng. Effects of vent burst pressure on explosion characteristics of premixed hydrogen-air gases[J]. Explosion And Shock Waves, 2023, 43(2): 025401. doi: 10.11883/bzycj-2022-0174
Citation: DU Saifeng, ZHANG Kai, CHEN Hao, GUO Jin, DUAN Zaipeng. Effects of vent burst pressure on explosion characteristics of premixed hydrogen-air gases[J]. Explosion And Shock Waves, 2023, 43(2): 025401. doi: 10.11883/bzycj-2022-0174

破膜压力对氢-空气预混气体燃爆特性的影响

doi: 10.11883/bzycj-2022-0174
基金项目: 国家社会科学基金(17CGL049)
详细信息
    作者简介:

    杜赛枫(1997- ),男,硕士研究生,1095290649@qq.com

    通讯作者:

    段在鹏(1985- ),男,博士,副教授,duanzaipeng@163.com

  • 中图分类号: O382.1

Effects of vent burst pressure on explosion characteristics of premixed hydrogen-air gases

  • 摘要: 利用自主设计的5.00 m长矩形管道,对氢气体积分数为30%的氢气-空气预混气体进行了不同破膜压力(pv)下的系列燃爆实验,重点研究了pv对管道内外火焰传播行为及爆炸超压的影响。实验结果表明:管道内的火焰传播行为受pv影响显著。在靠近泄爆口的压力传感器所监测的压力-时间曲线上,可以观察到3个压力峰值(pbpoutpext),分别对应于铝膜破裂、燃烧混合物泄放以及外部爆炸,大多数情况下,pb为最大压力峰值。管道内部最大超压随着pv升高而增大,但最大内部超压出现的位置受pv的影响。管道外部火焰传播行为与pv有关,但不同pv下外部火焰的最大长度无明显差异。最大外部超压与pv之间呈现非单调变化规律。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of experimental setup

    图  2  破膜压力186 kPa时管道内的典型火焰图像

    Figure  2.  Typical flame images inside the duct at the vent burst pressure of 186 kPa

    图  3  破膜压力186 kPa时火焰前沿位置和火焰传播速度

    Figure  3.  Location of flame front and flame speed at the vent burst pressure of 186 kPa

    图  4  不同破膜压力下管道内的典型火焰传播图像

    Figure  4.  Typical flame propagation images inside the duct under different vent burst pressures

    图  5  不同破膜压力下内部压力-时间曲线

    Figure  5.  Internal pressure-time histories under different vent burst pressures

    图  6  压力峰值与破膜压力之间的关系

    Figure  6.  Relationships between the pressure peaks and the vent burst pressure

    图  7  最大内部超压与破膜压力之间的关系

    Figure  7.  Relationships between the maximum internal overpressures and the vent burst pressure

    图  8  破膜压力为14和71 kPa时管道外部的火焰传播图像

    Figure  8.  Flame propagation images outside the duct at the vent burst pressures of 14 and 71 kPa

    图  9  破膜压力为14和71 kPa时外部压力-时间曲线

    Figure  9.  External pressure-time histories at the vent burst pressures of 14 and 71 kPa

    图  10  最大外部超压与破膜压力之间的关系

    Figure  10.  Relationship between the maximum external overpressure and the vent burst pressure

    表  1  不同厚度铝膜的静态破膜压力

    Table  1.   Static vent burst pressure for various thicknesses of aluminum film

    铝膜厚度/mm静态破膜压力1/kPa静态破膜压力2/kPa平均值/kPa
    0.025131414
    0.050272727
    0.075414342
    0.125687371
    0.17597102 100
    0.225128 134 131
    0.325182 190 186
    下载: 导出CSV
  • [1] 曹勇, 郭进, 胡坤伦, 等. 点火位置对氢气-空气预混气体泄爆过程的影响 [J]. 爆炸与冲击, 2016, 36(6): 847–852. DOI: 10.11883/1001-1455(2016)06-0847-06.

    CAO Y, GUO J, HU K L, et al. Effect of ignition locations on vented explosion of premixed hydrogen-air mixtures [J]. Explosion and Shock Waves, 2016, 36(6): 847–852. DOI: 10.11883/1001-1455(2016)06-0847-06.
    [2] XIAO H H, WANG Q S, HE X C, et al. Experimental study on the behaviors and shape changes of premixed hydrogen-air flames propagation in horizontal duct [J]. International Journal of Hydrogen Energy, 2011, 36(10): 6325–6336. DOI: 10.1016/j.ijhydene.2011.02.049.
    [3] 程关兵, 王国大, 黄燕晓. 氢气爆燃转爆轰特性试验研究 [J]. 中国安全科学学报, 2016, 26(12): 64–68. DOI: 10.16265/j.cnki.issn1003-3033.2016.12.012.

    CHENG G B, WANG G D, HUANG Y X. Experimental study on characteristics of hydrogen deflagration to detonation transition [J]. China Safety Science Journal, 2016, 26(12): 64–68. DOI: 10.16265/j.cnki.issn1003-3033.2016.12.012.
    [4] 郝腾腾, 王昌建, 颜王吉, 等. 氢气泄爆作用下结构动力响应特性研究 [J]. 爆炸与冲击, 2020, 40(6): 065401. DOI: 10.11883/bzycj-2019-0412.

    HAO T T, WANG C J, YAN W J, et al. Structural dynamical characteristics induced by vented hydrogen explosion [J]. Explosion and Shock Waves, 2020, 40(6): 065401. DOI: 10.11883/bzycj-2019-0412.
    [5] 张庆武, 蒋军成, 喻源, 等. 泄爆导管对球形容器内气体爆炸泄放过程影响的试验 [J]. 安全与环境学报, 2015, 15(2): 51–54. DOI: 10.13637/j.issn.1009-6094.2015.02.011.

    ZHANG Q W, JIANG J C, YU Y, et al. Experimental study over the effect of the relief duct on the venting of gas explosion in a spherical vessel [J]. Journal of Safety and Environment, 2015, 15(2): 51–54. DOI: 10.13637/j.issn.1009-6094.2015.02.011.
    [6] GUO J, SUN X X, RUI S C, et al. Effect of ignition position on vented hydrogen-air explosions [J]. International Journal of Hydrogen Energy, 2015, 40(45): 15780–15788. DOI: 10.1016/j.ijhydene.2015.09.038.
    [7] CHOW S K, CLEAVER R P, FAIRWEATHER M, et al. An experimental study of vented explosions in a 3∶1 aspect ratio cylindrical vessel [J]. Process Safety Environmental Protection, 2000, 78(6): 425–433. DOI: 10.1205/095758200530970.
    [8] KASMANI R M, ANDREWS G E, PHYLAKTOU H N, et al. Influence of static burst pressure and ignition position on duct-vented gas explosions [C] // Proceedings of the 5th International Seminar on Fire and Explosion Hazards. Edinburgh, England: 2007: 254–264.
    [9] BAO Q, FANG Q, ZHANG Y D, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures [J]. Fuel, 2016, 175: 40–48. DOI: 10.1016/j.fuel.2016.01.084.
    [10] 文虎, 高慧慧, 王秋红, 等. 泄爆口强度对管内天然气爆炸流场的影响仿真 [J]. 天然气工业, 2019, 39(8): 126–136. DOI: 10.3787/j.issn.1000-0976.2019.08.016.

    WEN H, GAO H H, WANG Q H, et al. A simulation study on the influence of vent port strength on the natural gas explosion flow field in line pipes [J]. Natural Gas Industry, 2019, 39(8): 126–136. DOI: 10.3787/j.issn.1000-0976.2019.08.016.
    [11] DOU Z G, ZHENG L G, ZHENG K, et al. Effect of film thickness and methane fraction on explosion characteristics of biogas/air mixture in a duct [J]. Process Safety and Environmental Protection, 2020, 139: 26–35. DOI: 10.1016/j.psep.2020.04.006.
    [12] RUI S C, LI Q, GUO J, et al. Experimental and numerical study on the effect of low vent burst pressure on vented methane-air deflagrations [J]. Process Safety and Environmental Protection, 2021, 146: 35–42. DOI: 10.1016/j.psep.2020.08.028.
    [13] CAO Y, GUO J, HU K L, et al. Effect of ignition location on external explosion in hydrogen-air explosion venting [J]. International Journal of Hydrogen Energy, 2017, 42(15): 10547–10554. DOI: 10.1016/j.ijhydene.2017.01.09.
    [14] RUI S C, GUO J, LI G, et al. The effect of vent burst pressure on a vented hydrogen-air deflagration in a 1 m3 vessel [J]. International Journal of Hydrogen Energy, 2018, 43(45): 21169–21176. DOI: 10.1016/j.ijhydene.2018.09.124.
    [15] ZHANG S, TANG Z S, LI J L, et al. Effects of equivalence ratio, thickness of rupture membrane and vent area on vented hydrogen-air deflagrations in an end-vented duct with an obstacle [J]. International Journal of Hydrogen Energy, 2019, 44(47): 26100–26108. DOI: 10.1016/j.ijhydene.2019.08.057.
    [16] Spanish Institute of Standardization. Gas explosion venting protective systems: UNE-EN 14994-2007 [S]. Brussels, Belgium: European Committee for Standardization, 2007.
    [17] Institute National Fire Protection Association. Standard on explosion protection by deflagration venting: NFPA 68 ERTA 1-2017 [S]. USA: American National Standards, 2017.
    [18] DAHOE A E. Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(3): 152–166. DOI: 10.1016/j.jlp.2005.03.007.
    [19] FERRARA G, WILLACY S K, PHYLAKTOU H N, et al. Venting of gas explosion through relief ducts: interaction between internal and external explosions [J]. Journal of Hazardous Materials, 2008, 155(1): 358–368. DOI: 10.1016/j.jhazmat.2007.11.077.
    [20] 李艳超, 毕明树, 高伟. 耦合火焰自加速传播的氢气云爆炸超压预测 [J]. 爆炸与冲击, 2021, 41(7): 072101. DOI: 10.11883/bzycj-2019-0004.

    LI Y C, BI M S, GAO W. Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame propagation [J]. Explosion and Shock Waves, 2021, 41(7): 072101. DOI: 10.11883/bzycj-2019-0004.
    [21] JIANG X, FAN B, YE J, et al. Experimental investigations on the external pressure during venting [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(1): 21–26. DOI: 10.1016/j.jlp.2004.09.002.
    [22] GUO J, WANG C J, LIU X Y. Experimental study on duct-vented explosion of hydrogen-air mixtures in a wide range of equivalence ratio [J]. Industrial and Engineering Chemistry Research, 2016, 55(35): 9518–9523. DOI: 10.1021/acs.iecr.6b02029.
    [23] SUN X X, LU S X. On the mechanisms of flame propagation in methane-air mixtures with concentration gradient [J]. Energy, 2020, 202: 117782. DOI: 10.1016/j.energy.2020.117782.
    [24] 肖华华. 管道中氢-空气预混火焰传播动力学实验与数值模拟研究 [D]. 合肥: 中国科学技术大学, 2013.

    XIAO H H. Experimental and numerical study of dynamics of premixed hydrogen-air flame propagating in ducts [D] Hefei, Anhui, China: University of Science and Technology of China, 2013.
    [25] COOPER M G, FAIRWEATHER M, TITE J P. On the mechanisms of pressure generation in vented explosions [J]. Combustion and Flame, 1986, 65(1): 1–14. DOI: 10.1016/0010-2180(86)90067-2.
    [26] 王亚磊, 郑立刚, 于水军, 等. 约束端面对管内甲烷爆炸特性的影响 [J]. 爆炸与冲击, 2019, 39(9): 139–148. DOI: 10.11883/bzycj-2018-0249.

    WANG Y L, ZHENG L G, YU S J, et al. Effect of vented end faces on characteristics of methane explosion in duct [J]. Explosion and Shock Waves, 2019, 39(9): 139–148. DOI: 10.11883/bzycj-2018-0249.
    [27] GUO J, LI Q, CHEN D D, et al. Effect of burst pressure on vented hydrogen-air explosion in a cylindrical vessel [J]. International Journal of Hydrogen Energy, 2015, 40(19): 6478–6486. DOI: 10.1016/j.ijhydene.2015.03.059.
    [28] TOMLIN G, JOHNSON D M, CRONIN P, et al. The effect of vent size and congestion in large-scale vented natural gas [J]. Journal of Loss Prevention in the Process Industries, 2015, 35: 169–181. DOI: 10.1016/j.jlp.2015.04.014.
    [29] KUZNETSOV M, FRIEDRICH A, STERN G, et al. Medium-scale experiments on vented hydrogen deflagration [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 416–428. DOI: 10.1016/j.jlp.2015.04.013.
    [30] RUI S C, WANG C J, LUO X J, et al. Experimental study on the effects of ignition location and vent burst pressure on vented hydrogen-air deflagrations in a cubic vessel [J]. Fuel, 2020, 278(15): 118342. DOI: 10.1016/j.fuel.2020.118342.
    [31] FAKANDU B M, ANDREWS G E, PHYLAKTOU H N. Vent burst pressure effects on vented gas explosion reduced pressure [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 429–438. DOI: 10.1016/j.jlp.2015.02.005.
    [32] 李静野, 蒋新生, 李进, 等. 长径比对管道油气爆炸特性与火焰传播规律影响研究 [J]. 中国安全生产科学技术, 2020, 16(8): 88–94. DOI: 10.11731/jissn.1673-193x.2020.08.014.

    LI J Y, JIANG X S, LI J, et al. Study on influence of length-diameter ratio on explosion characteristics and flame propagation laws of gasoline-air mixture in pipelin [J]. Journal of Safety Science and Technology, 2020, 16(8): 88–94. DOI: 10.11731/jissn.1673-193x.2020.08.014.
    [33] ZHOU N, NI P F, LI X, et al. Experimental study and numerical simulation of the influence of vent conditions on hydrogen explosion characteristics [J]. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021(11): 1–16. DOI: 10.1080/15567036.2021.1898494.
    [34] ZHENG L G, DOU Z G, DU D P, et al. Study on explosion characteristics of premixed hydrogen/biogas/air mixture in a duct [J]. International journal of Hydrogen Energy, 2019, 44(49): 27159–27173. DOI: 10.1016/j.ijhydene.2019.08.156.
    [35] 杜扬, 王世茂, 袁广强, 等. 含弱约束端面短管道油气爆炸特性实验研究 [J]. 爆炸与冲击, 2018, 38(2): 465–472. DOI: 10.11883/bzycj-2015-0242.

    DU Y, WANG S M, YUAN G Q, et al. Experimental study of fuel-air mixture explosion characteristics in the short pipe containing weakly confined face at the end [J]. Explosion and Shock Waves, 2018, 38(2): 465–472. DOI: 10.11883/bzycj-2015-0242.
    [36] 罗鑫蛟. 管道内贫氢泄爆超压特性及外部爆炸机理研究 [D]. 合肥: 合肥工业大学, 2021.

    LUO X J. Study on overpressure characteristics and external explosion mechanism of vented lean hydrogen explosion in pipeline [D]. Hefei, Anhui, China: Hefei University of Technology, 2021.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  561
  • HTML全文浏览量:  119
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-24
  • 修回日期:  2022-10-11
  • 网络出版日期:  2022-10-13
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回