Mechanism of damage-induced fracture formation in shale reservoir penetrated by shaped charge jet
-
摘要: 为研究药型罩对聚能射孔弹侵彻页岩储层的射孔和损伤致裂效果的影响机理,建立了射孔弹-空气-页岩三维模型,设置药型罩的锥角分别为50°、60°、70°和80°,壁厚分别为0.5、1.0和1.5 mm,材料分别为铜、钢、钛和钨。利用ANSYS/LS-DYNA软件进行数值计算,分别从射流速度与形态、页岩射孔效果及页岩孔裂隙形成规律特征等进行系统性分析。研究结果表明:在射孔弹结构中,随着药型罩锥角的减小,射流速度提高、杵体速度降低、侵彻深度增大同时开孔孔径减小。在一定范围内,适当减小药型罩的壁厚,可以提高射流速度、减小杵体质量、增大侵彻深度和开孔倾斜度。药型罩材料对射流速度、杵体结构和页岩射孔效果均有显著影响,其中钨药型罩射孔弹的侵彻深度最大但开孔孔径最小,钛药型罩射孔弹的侵彻深度最小但开孔倾斜度最大,铜比钢药型罩射孔弹的侵彻深度略大但开孔孔径略小。通过研究不同对照组的页岩孔裂隙形成规律特征发现,页岩孔裂隙发育主要发生在杵体对页岩的再扩孔阶段,减小射流初始扩孔孔径、增大杵体直径、提高杵体速度,可以促进页岩孔裂隙发育程度。
-
关键词:
- 聚能射孔 /
- 页岩储层 /
- 药型罩 /
- 裂隙扩展 /
- 射孔弹-空气-页岩三维模型
Abstract: To study the influence mechanism of shaped charge liner on the perforation and damage-induced fracturing effect of shale reservoir by shaped charge penetration, a three-dimensional perforating charge-air-shale model was established. The cone angles of the liner are 50°, 60°, 70°, and 80°. The liner thicknesses are 0.5 mm, 1.0 mm, and 1.5 mm. And the materials of the liner are copper, steel, titanium, and tungsten. The numerical calculation was carried out using the ALE-Lagrangian coupling method in the non-linear program ANSYS/LS-DYNA. The ALE method was used to describe shell, explosive, liner, and air, while the Lagrangian method was used to describe the shale reservoir. A systematic analysis was carried out on the aspects of jet velocity and shape, shale perforation effect, and fracture extension characteristics of shale. The results show that with the decrease of the cone angle of the liner, the jet velocity and penetration depth increase, and the pestle velocity and perforation diameter decrease. In a certain range, with the decreasing liner thickness, the jet velocity, penetration depth, and perforation inclination increase, and the mass of the pestle decrease. The liner material significantly influences the jet velocity, pestle structure, and shale perforation effect. Among them, the penetration depth of perforating charge with a tungsten liner is the largest, but the perforation diameter is the smallest, the penetration depth of perforating charge with a titanium liner is the smallest, but the perforation inclination is the largest, and the penetration depth of perforating charge with a copper liner is slightly larger than that with a steel liner, but the perforation diameter is slightly smaller. Because the detonation pressure has an obvious difference before and after the detonation wave transmitted to the end of the explosive, which affects the jet velocity and penetration depth, the charge with a shell has a greater jet velocity and penetration depth than the charge without a shell. By comparing the fracture extension characteristics of shale in different groups, it is found that the fracture extension of shale mainly occurs in the stage of re-reaming of a pestle on shale. It is concluded that the material and structure of the liner have a significant influence on the shaped charge jet and its penetration effect, which then affects the damage-induced fracture formation and extension in shale. The fracture extension of the shale can be promoted by reducing the initial perforation diameter of penetration, increasing the diameter of the pestle, and increasing the speed of the pestle. -
表 1 金属材料的本构模型参数
Table 1. Parameters of the constitutive model of metallic materials
材料 $ {\rho _2} $/(kg·m−3) $ {A_1} $/MPa $ {B_1} $/MPa C n m $ {T_{{\text{melt}}}} $/K $ {T_{{\text{room}}}} $/K 铜 8960 90 292 0.025 0.31 1.09 1356 293 钢 7830 792 510 0.014 0.26 1.03 1793 293 钛 4510 1111 106 0.025 0.29 1.10 1710 293 钨 17000 1506 177 0.016 0.12 1.00 1723 293 表 2 金属材料的状态方程参数
Table 2. Parameters of the equation of state of metallic materials
材料 c/(m·s−1) $ {S_1} $ $ {S_2} $ $ {S_3} $ $ {\gamma _0} $ $ a $ $ {E_2} $/J 铜 3940 1.490 0 0 1.99 0.46 0 钢 4569 1.490 0 0 2.17 0.46 0 钛 5210 1.620 0 0 2.32 0.46 0 钨 4029 1.237 0 0 1.54 0.46 0 表 3 页岩本构模型参数
Table 3. Parameters of the shale constitutive model
ρ3/(kg·m−3) G/GPa A2 B2 $ \dot \varepsilon /{{\text{s}}^{ - 1}} $ εfmin Smax pcr/GPa µcr D1 2650 12.00 0.71 1.84 2.9×10−5 0.01 5.0 0.035 8×10−4 0.045 D2 T/MPa fc/MPa µlock C7 N plock/GPa K1/GPa K2/GPa K3/GPa 1.00 13.8 121.36 0.1 0.007 1.00 1.035 85 −171 208 表 4 射孔弹模型的分组
Table 4. Grouping of perforating charge models
编号 锥角/(°) 壁厚/mm 材料 A-1-Ⅰ 50 1.0 铜 B-1-Ⅰ 60 1.0 铜 C-1-Ⅰ 70 1.0 铜 D-1-Ⅰ 80 1.0 铜 C-2-Ⅰ 70 0.5 铜 C-3-Ⅰ 70 1.5 铜 C-1-Ⅱ 70 1.0 铁 C-1-Ⅲ 70 1.0 钛 C-1-Ⅳ 70 1.0 钨 -
[1] 邹才能, 熊波, 薛华庆, 等. 新能源在碳中和中的地位与作用 [J]. 石油勘探与开发, 2021, 48(2): 411–420. DOI: 10.11698/PED.2021.02.18.ZOU C N, XIONG B, XUE H Q, et al. The role of new energy in carbon neutral [J]. Petroleum Exploration and Development, 2021, 48(2): 411–420. DOI: 10.11698/PED.2021.02.18. [2] 马永生, 蔡勋育, 赵培荣. 中国页岩气勘探开发理论认识与实践 [J]. 石油勘探与开发, 2018, 45(4): 561–574. DOI: 10.11698/PED.2018.04.03.MA Y S, CAI X Y, ZHAO P R. China’s shale gas exploration and development: understanding and practice [J]. Petroleum Exploration and Development, 2018, 45(4): 561–574. DOI: 10.11698/PED.2018.04.03. [3] 王濡岳, 胡宗全, 刘敬寿, 等. 中国南方海相与陆相页岩裂缝发育特征及主控因素对比: 以黔北岑巩地区下寒武统为例 [J]. 石油与天然气地质, 2018, 39(4): 631–640. DOI: 10.11743/ogg20180401.WANG R Y, HU Z Q, LIU J S, et al. Comparative analysis of characteristics and controlling factors of fractures in marine and continental shales: a case study of the Lower Cambrian in Cengong area, northern Guizhou Province [J]. Oil and Gas Geology, 2018, 39(4): 631–640. DOI: 10.11743/ogg20180401. [4] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(二) [J]. 石油勘探与开发, 2016, 43(2): 166–178. DOI: 10.11698/PED.2016.02.02.ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: characteristics, challenges and prospects (Ⅱ) [J]. Petroleum Exploration and Development, 2016, 43(2): 166–178. DOI: 10.11698/PED.2016.02.02. [5] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一) [J]. 石油勘探与开发, 2015, 42(6): 689–701. DOI: 10.11698/PED.2015.06.01.ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: characteristics, challenges and prospects (I) [J]. Petroleum Exploration and Development, 2015, 42(6): 689–701. DOI: 10.11698/PED.2015.06.01. [6] 金玮玮, 张昭, 张洪武. 药型罩锥角对射孔枪射流冲击过程的影响 [J]. 计算力学学报, 2011, 28(S1): 43–48.JIN W W, ZHANG Z, ZHANG H W. Effect of liner cone angle on perforation and impact process of perforating guns [J]. Chinese Journal of Computational Mechanics, 2011, 28(S1): 43–48. [7] SU C H, LAN Q F, ZHENG Y F. Effects of liner material and structure on penetration characteristics of small-diameter shaped charge [J]. Applied Mechanics and Materials, 2019, 893: 62–68. DOI: 10.4028/www.scientific.net/AMM.893.62. [8] DEHESTANI P, FATHI A, DANIALI H M. Numerical study of the stand-off distance and liner thickness effect on the penetration depth efficiency of shaped charge process [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(3): 977–986. DOI: 10.1177/0954406218766183. [9] 张晓伟, 段卓平, 张庆明. 钛合金药型罩聚能装药射流成型与侵彻实验研究 [J]. 北京理工大学学报, 2014, 34(12): 1229–1233. DOI: 10.15918/j.tbit1001-0645.2014.12.004.ZHANG X W, DUAN Z P, ZHANG Q M. Experimental study on the jet formation and penetration of conical shaped charges with titanium alloy liner [J]. Transactions of Beijing Institute of Technology, 2014, 34(12): 1229–1233. DOI: 10.15918/j.tbit1001-0645.2014.12.004. [10] 贺海民, 王利侠, 孙建, 等. 钼药型罩杆状射流形成的数值模拟及实验研究 [J]. 爆炸与冲击, 2013, 33(S1): 28–33.HE H M, WANG L X, SUN J, et al. Experiment and numerical simulation on rod-like jet formation by molybdenum liner [J]. Explosion and Shock Waves, 2013, 33(S1): 28–33. [11] 樊雪飞, 李伟兵, 王晓鸣, 等. 爆轰驱动钽药型罩形成双模毁伤元仿真与试验研究 [J]. 兵工学报, 2017, 38(10): 1918–1925. DOI: 10.3969/j.issn.1000-1093.2017.10.006.FAN X F, LI W B, WANG X M, et al. Simulation and experimental study of tantalum liner to form dual-mode damage element by detonation [J]. Acta Armamentarii, 2017, 38(10): 1918–1925. DOI: 10.3969/j.issn.1000-1093.2017.10.006. [12] ZAKI S, UDDIN E, RASHID B, et al. Effect of liner material and explosive type on penetration effectiveness of shaped charge [J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(7): 1375–1383. DOI: 10.1177/1464420717753233. [13] 肖强强, 黄正祥, 祖旭东. 双材质复合射流对混凝土的侵彻 [J]. 爆炸与冲击, 2014, 34(4): 457–463. DOI: 10.11883/1001-1455(2014)04-0457-07.XIAO Q Q, HUANG Z X, ZU X D. Penetration of jacketed jet into concrete [J]. Explosion and Shock Waves, 2014, 34(4): 457–463. DOI: 10.11883/1001-1455(2014)04-0457-07. [14] 张晓伟, 肖强强, 黄正祥, 等. 药型罩材料对射流侵彻高强度混凝土影响研究 [J]. 弹箭与制导学报, 2020, 40(5): 1–4, 9. DOI: 10.15892/j.cnki.djzdxb.2020.05.001.ZHANG X W, XIAO Q Q, HUANG Z X, et al. Influence of liner material on penetration capability by jet into high strength concrete [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(5): 1–4, 9. DOI: 10.15892/j.cnki.djzdxb.2020.05.001. [15] 任劼, 党发宁, 马宗源, 等. 复杂地应力条件下聚能装药侵彻深部砂岩穿透深度研究 [J]. 岩石力学与工程学报, 2018, 37(3): 679–688. DOI: 10.13722/j.cnki.jrme.2017.1281.REN J, DANG F N, MA Z Y, et al. Penetration depth of shaped charge into deep sandstone under complex geostress [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 679–688. DOI: 10.13722/j.cnki.jrme.2017.1281. [16] 康德, 严平. 基于LS-DYNA的高速破片水中运动特性流固耦合数值模拟 [J]. 爆炸与冲击, 2014, 34(5): 534–538. DOI: 10.11883/1001-1455(2014)05-0534-05.KANG D, YAN P. Movement characteristics of high-velocity fragments in water medium: numerical simulation using LS-DYNA [J]. Explosion and Shock Waves, 2014, 34(5): 534–538. DOI: 10.11883/1001-1455(2014)05-0534-05. [17] LSTC. LS-DYNA keyword user’s manual: version 971 [M]. Livermore: Livermore Software Technology Corporation, 2012. [18] 陈振华, 张国伟, 高元浩, 等. JPC对不同角度的移动靶的侵彻数值模拟 [J]. 机电技术, 2014(6): 54–56. DOI: 10.3969/j.issn.1672-4801.2014.06.018.CHEN Z H, ZHANG G W, GAO Y H, et al. Numerical simulation of JPC penetration into moving targets with different angles [J]. Mechanical and Electrical Technology, 2014(6): 54–56. DOI: 10.3969/j.issn.1672-4801.2014.06.018. [19] 申涛, 罗宁, 向俊庠, 等. 切缝药包爆炸作用机理数值模拟 [J]. 爆炸与冲击, 2018, 38(5): 1172–1180. DOI: 10.11883/bzycj-2017-0410.SHEN T, LUO N, XIANG J X, et al. Numerical simulation on explosion mechanism of split-tube charge holders [J]. Explosion and Shock Waves, 2018, 38(5): 1172–1180. DOI: 10.11883/bzycj-2017-0410. [20] 陈大年, 范春雷, 胡金伟, 等. 高导无氧铜的高压与高应变率本构模型研究 [J]. 物理学报, 2009, 58(4): 2612–2618. DOI: 10.7498/aps.58.2612.CHEN D N, FAN C L, HU J W, et al. On constitutive models of oxygen-free high-conductivity copper at high pressure and high strain rates [J]. Acta Physica Sinica, 2009, 58(4): 2612–2618. DOI: 10.7498/aps.58.2612. [21] 杨扬, 曾毅, 汪冰峰. 基于Johnson-Cook模型的TC16钛合金动态本构关系 [J]. 中国有色金属学报, 2008, 18(3): 505–510. DOI: 10.3321/j.issn:1004-0609.2008.03.021.YANG Y, ZENG Y, WANG B F. Dynamic constitutive relationship of TC16 titanium alloy based on Johnson-cook model [J]. The Chinese Journal of Nonferrous Metals, 2008, 18(3): 505–510. DOI: 10.3321/j.issn:1004-0609.2008.03.021. [22] LITTLEFIELD D L, ANDERSON JR C E, PARTOM Y, et al. The penetration of steel targets finite in radial extent [J]. International Journal of Impact Engineering, 1997, 19(1): 49–62. DOI: 10.1016/S0734-743X(96)00001-2. [23] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics, 1983, 21: 541–548. [24] 田怡萍. 页岩爆燃压裂下裂缝扩展模式数值模拟研究 [D]. 四川绵阳: 西南科技大学, 2019.TIAN Y P. Numerical simulation study on crack propagation mode under shale deflagration fracturing [D]. Mianyang, Sichuan, China: Southwest University of Science and Technology, 2019. [25] 肖强强, 黄正祥, 顾晓辉. 冲击波影响下的聚能射流侵彻扩孔方程 [J]. 高压物理学报, 2011, 25(4): 333–338. DOI: 10.11858/gywlxb.2011.04.008.XIAO Q Q, HUANG Z X, GU X H. Equation of penetration and crater growth by shaped charge jet under the influence of shock wave [J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 333–338. DOI: 10.11858/gywlxb.2011.04.008.