Zr基非晶合金破片冲击破碎反应机制研究

张云峰 方龙 魏欣 徐畅 随亚光 施冬梅

张云峰, 方龙, 魏欣, 徐畅, 随亚光, 施冬梅. Zr基非晶合金破片冲击破碎反应机制研究[J]. 爆炸与冲击, 2023, 43(1): 013103. doi: 10.11883/bzycj-2022-0187
引用本文: 张云峰, 方龙, 魏欣, 徐畅, 随亚光, 施冬梅. Zr基非晶合金破片冲击破碎反应机制研究[J]. 爆炸与冲击, 2023, 43(1): 013103. doi: 10.11883/bzycj-2022-0187
ZHANG Yunfeng, FANG Long, WEI Xin, XU Chang, SUI Yaguang, SHI Dongmei. Research on mechanism of shock fragmentation reaction of Zr-based bulk metallic glass fragment[J]. Explosion And Shock Waves, 2023, 43(1): 013103. doi: 10.11883/bzycj-2022-0187
Citation: ZHANG Yunfeng, FANG Long, WEI Xin, XU Chang, SUI Yaguang, SHI Dongmei. Research on mechanism of shock fragmentation reaction of Zr-based bulk metallic glass fragment[J]. Explosion And Shock Waves, 2023, 43(1): 013103. doi: 10.11883/bzycj-2022-0187

Zr基非晶合金破片冲击破碎反应机制研究

doi: 10.11883/bzycj-2022-0187
详细信息
    作者简介:

    张云峰(1990- ),男,博士,助理研究员,1193954881@qq.com

    通讯作者:

    方 龙(1988- ),男,博士,助理研究员,751173072@ qq.com

  • 中图分类号: O385; TJ410

Research on mechanism of shock fragmentation reaction of Zr-based bulk metallic glass fragment

  • 摘要: 为研究Zr基非晶合金破片的冲击破碎反应机制,进行了准密封箱冲击超压实验,测试了破片的碎片粒度,分析了碎片尺寸分布关系,并对不同粒径尺度的碎片进行了X射线衍射分析。实验结果表明,材料在冲击加载下的反应程度随着撞击速度的升高而增大;碎片分布符合分段式幂次律分布规律;材料冲击诱发的化学反应主要为Zr元素与空气中氧气的燃烧,其主要反应产物为ZrO2。基于冲击升温-碎片分布-碎片燃烧的冲击破碎反应理论模型能较好地解释冲击作用下Zr基非晶合金破片的反应规律,理论计算与实验结果吻合度较高。
  • 图  1  准密封箱冲击超压实验布置

    Figure  1.  Experimental layout of quasi-sealed chamber shock overpressure test

    图  2  破片飞行过程高速摄影图像

    Figure  2.  High-speed photograph of fragment flight

    图  3  破片冲击破碎反应过程高速摄影图像

    Figure  3.  High-speed photographs of process for reaction of fragments

    图  4  实测压力曲线与准静态压力曲线

    Figure  4.  Actual pressure and quasi-static pressure curves

    图  5  准静态压力-时间曲线

    Figure  5.  Quasi-static pressure-time curves

    图  6  碎片粒度分布测试结果

    Figure  6.  Test results of debris size distribution

    图  7  碎片粒度分布模型

    Figure  7.  Models of debris size distribution

    图  8  碎片XRD分析结果

    Figure  8.  Results of XRD analysis of debris

    图  9  反应程度-撞击速度曲线

    Figure  9.  Curve of extent of reaction vs. impacting velocity

    图  10  Zr62.5Nb3Cu14.5Ni14Al6非晶合金的冲击压力、温度与撞击速度的关系

    Figure  10.  Relationships among shock pressure, shock temperature and impact velocity of Zr62.5Nb3Cu14.5Ni14Al6 bulk metallic glass

    图  11  Zr碎片着火温度的尺寸效应

    Figure  11.  Size effect of ignition temperature for Zr fragments

    图  12  反应深度与冲击速度、冲击压力关系的实验与理论计算结果对比

    Figure  12.  Comparison between experimental results and theoretical results of relationships among reaction extent, impact velocity and shock pressure

    表  1  超压峰值实验数据

    Table  1.   Experimental data of overpressure peak data

    试验编号v/(m·s−1)m/g$ {{\Delta }}p $/MPa
    15523.430.019
    27233.40.033
    38343.420.042
    411053.490.058
    511523.420.069
    612423.360.105
    714063.410.124
    814853.470.151
    下载: 导出CSV

    表  2  实验数据及计算结果

    Table  2.   Results of calculation and experimental data

    实验v/(m·s−1)$ {{\Delta }}{E_{\text{C}}} $/kJEk/kJ$ {{\Delta }}Q $/kJQc/kJy/%
    1 552 1.670.16 1.5229.32 5.17
    2 723 2.900.27 2.6429.06 9.08
    3 834 3.700.36 3.3429.2311.42
    41 105 5.100.64 4.4729.8314.97
    51 152 6.070.68 5.3929.2318.44
    61 242 9.240.78 8.4628.7229.47
    71 40610.911.01 9.9029.1533.97
    81 48513.291.1512.2429.6640.93
    下载: 导出CSV
  • [1] LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments [J]. Materials and Design, 2015, 84: 72–78. DOI: 10.1016/j.matdes.2015.06.107.
    [2] WANG C T, HE Y, JI C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass [J]. Intermetallics, 2018, 93: 383–388. DOI: 10.1016/j.intermet.2017.11.004.
    [3] WEI H Y, YOO C S. Dynamic responses of reactive metallic structures under thermal and mechanical ignitions [J]. Journal of Materials Research, 2012, 27(21): 2705–2717. DOI: 10.1557/jmr.2012.302.
    [4] WEI H Y, YOO C S. Dynamic structural and chemical responses of energetic solids [J]. MRS Online Proceedings Library (OPL), 2012, 1405: 62–71. DOI: 10.1557/opl.2012.59.
    [5] JI C, HE Y, WANG C T, et al. Effect of dynamic fragmentation on the reaction characteristics of a Zr-based metallic glass [J]. Journal of Non-Crystalline Solids, 2019, 515: 149–156. DOI: 10.1016/j.jnoncrysol.2019.04.022.
    [6] GRADY D E. Fragment size distributions from the dynamic fragmentation of brittle solids [J]. International Journal of Impact Engineering, 2008, 35(12): 1557–1562. DOI: 10.1016/j.ijimpeng.2008.07.042.
    [7] GRADY D E. Length scales and size distributions in dynamic fragmentation [J]. International Journal of Fracture, 2010, 163(1/2): 85–99. DOI: 10.1007/s10704-009-9418-4.
    [8] ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(8): 083508. DOI: 10.1063/1.4793281.
    [9] 谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007: 4–87.

    TAN H. Introduction to experimental shock-wave physics [M]. Beijing: National Defense Industry Press, 2007: 4–87.
    [10] ZHANG X F, SHI A S, ZHANG J, et al. Thermochemical modeling of temperature controlled shock-induced chemical reactions in multifunctional energetic structural materials under shock compression [J]. Journal of Applied Physics, 2012, 111(12): 123501. DOI: 10.1063/1.4729048.
    [11] 张云峰. Zr基非晶合金破片特性及毁伤机理研究 [D]. 石家庄: 陆军工程大学, 2020: 29–84.
    [12] MOHAN S, TRUNOV M A, DREIZIN E L. Heating and ignition of metal particles in the transition heat transfer regime [J]. Journal of Heat Transfer, 2008, 130(10): 104505. DOI: 10.1115/1.2945881.
    [13] PHUOC T X, CHEN R H. Modeling the effect of particle size on the activation energy and ignition temperature of metallic nanoparticles [J]. Combustion and Flame, 2012, 159(1): 416–419. DOI: 10.1016/j.combustflame.2011.07.003.
    [14] MOHAN S, TRUNOV M A, DREIZIN E L. On possibility of vapor-phase combustion for fine aluminum particles [J]. Combustion and Flame, 2009, 156(11): 2213–2216. DOI: 10.1016/j.combustflame.2009.08.007.
    [15] HUANG Y, RISHA G A, YANG V, et al. Effect of particle size on combustion of aluminum particle dust in air [J]. Combustion and Flame, 2009, 156(1): 5–13. DOI: 10.1016/j.combustflame.2008.07.018.
    [16] 张云峰, 罗兴柏, 李晨, 等. 锆、铝颗粒活化能尺寸效应的理论模型 [J]. 稀有金属材料与工程, 2020, 49(12): 4097–4102.

    ZHANG Y F, LUO X B, LI C, et al. Analytical model for size effect of activation energy of zirconium and aluminum particles [J]. Rare Metal Materials and Engineering, 2020, 49(12): 4097–4102.
    [17] MAGLIA F, ANSELMI-TAMBURINI U, GENNARI S, et al. Dynamic behaviour and chemical mechanism in the self-propagating high-temperature reaction between Zr powders and oxygen gas [J]. Physical Chemistry Chemical Physics, 2001, 3(3): 489–496. DOI: 10.1039/B005678M.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  434
  • HTML全文浏览量:  117
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-09-04
  • 网络出版日期:  2022-09-14
  • 刊出日期:  2023-01-05

目录

    /

    返回文章
    返回