冲击荷载作用下滤波混凝土的动态响应与层裂损伤数值研究

李国强 马钢 高松涛 郭栋才 张佳寅

李国强, 马钢, 高松涛, 郭栋才, 张佳寅. 冲击荷载作用下滤波混凝土的动态响应与层裂损伤数值研究[J]. 爆炸与冲击, 2023, 43(2): 023201. doi: 10.11883/bzycj-2022-0189
引用本文: 李国强, 马钢, 高松涛, 郭栋才, 张佳寅. 冲击荷载作用下滤波混凝土的动态响应与层裂损伤数值研究[J]. 爆炸与冲击, 2023, 43(2): 023201. doi: 10.11883/bzycj-2022-0189
LI Guoqiang, MA Gang, GAO Songtao, GUO Dongcai, ZHANG Jiayin. Numerical study on dynamic response and spall damage of filter concrete under impact load[J]. Explosion And Shock Waves, 2023, 43(2): 023201. doi: 10.11883/bzycj-2022-0189
Citation: LI Guoqiang, MA Gang, GAO Songtao, GUO Dongcai, ZHANG Jiayin. Numerical study on dynamic response and spall damage of filter concrete under impact load[J]. Explosion And Shock Waves, 2023, 43(2): 023201. doi: 10.11883/bzycj-2022-0189

冲击荷载作用下滤波混凝土的动态响应与层裂损伤数值研究

doi: 10.11883/bzycj-2022-0189
基金项目: 国家自然科学基金(52178239,12102292);山西省自然科学基金(20210302124083)
详细信息
    作者简介:

    李国强(1997- ),男,硕士研究生,707264680@qq.com

    通讯作者:

    马 钢(1988- ),男,博士,副教授,magang@tyut.edu.cn

  • 中图分类号: O382

Numerical study on dynamic response and spall damage of filter concrete under impact load

  • 摘要: 借鉴局域共振材料的工作机制,通过在混凝土基体中嵌入滤波单元,设计出具有应力波衰减特性的滤波混凝土。通过将滤波混凝土结构简化为质量弹簧力学系统来分析滤波混凝土对应力波的衰减机制。采用数值模拟方法,对比研究了冲击荷载作用下普通混凝土模型和滤波混凝土模型中应力波的传播特性和层裂破坏模式。通过参数分析,研究了滤波单元的材料和几何属性对其储能效果的影响。研究结果表明:滤波单元有效降低了混凝土基体中应力波的传播速度和应力峰值;滤波单元的储能机制有效降低了混凝土基体中的能量;金属球的质量越大,滤波单元的储能效果越好,但弹性层的弹性模量和厚度需要通过适当分析进行设计以实现滤波单元的储能最大化;滤波混凝土基体的局部损伤耗散了荷载中的大量能量,有效降低了结构自由面附近的破坏程度。
  • 图  1  滤波混凝土基本单元

    Figure  1.  Basic unit of filter concrete

    图  2  质量弹簧力学系统

    Figure  2.  Mass-spring mechanical system

    图  3  meff/mstω/ω2的函数关系

    Figure  3.  Function relationship between meff/mst and ω/ω2

    图  4  混凝土材料本构模型

    Figure  4.  Constitutive model of concrete material

    图  5  滤波混凝土有限元模型

    Figure  5.  Finite element model of filter concrete

    图  6  滤波混凝土模型截面示意图

    Figure  6.  Sectional diagrams of filter concrete model

    图  7  实验[21]中的冲击荷载曲线

    Figure  7.  Impact loading curve in the experiment[21]

    图  8  数值模拟与实验条件下混凝土的应变时程曲线

    Figure  8.  Strain time history curves of concrete under numerical simulation and experiment

    图  9  实验与数值模拟条件下的破坏形态对比

    Figure  9.  Comparison of failure patterns under experiment and numerical simulation

    图  10  峰值为10 MPa的冲击荷载曲线

    Figure  10.  Impact load curve with the peak value of 10 MPa

    图  11  截面与单元选取位置示意图

    Figure  11.  Location diagrams of sections and elements selected

    图  12  峰值为10 MPa冲击荷载下截面S1~S5的平均应力时程曲线

    Figure  12.  Average stress time history curves of sections S1–S5 under impact load with the peak value of 10 MPa

    图  13  模型在0.140 ms时的纵截面应力云图

    Figure  13.  Stress contours of the model in the longitudinal section at 0.140 ms

    图  14  模型在0.270 ms时的纵截面应力云图

    Figure  14.  Stress contours of the model in the longitudinal section at 0.270 ms

    图  15  单元E1与E2的位移时程曲线

    Figure  15.  Displacement time history curves of elements E1 and E2

    图  16  滤波混凝土模型中各部分的能量时程曲线

    Figure  16.  Energy time history curve of each part in the filter concrete model

    图  17  滤波混凝土模型截面S0处单元E3~E5的应力时程曲线

    Figure  17.  Stress time history curves of elements E3–E5 at section S0 in the filter concrete model

    图  18  金属球密度不同时混凝土基体的能量占比时程曲线

    Figure  18.  Energy proportion time history curves of concrete matrix with different metal ball densities

    图  19  金属球密度不同时截面S4处的平均应力时程曲线

    Figure  19.  Average stress time history curves of section S4 with different metal ball densities

    图  20  弹性层的弹性模量不同时混凝土基体的能量占比时程曲线

    Figure  20.  Energy proportion time history curves of concrete matrix with different elastic modulus of elastic layer

    图  21  弹性层的弹性模量不同时单元E1与E2的位移时程曲线

    Figure  21.  Displacement time history curves of elements E1 and E2 with different elastic modulis of elastic layers

    图  22  弹性层的厚度不同时混凝土基体的能量占比时程曲线

    Figure  22.  Energy proportion time history of concrete matrix with different thicknesses of elastic layers

    图  23  无弹性包裹层时滤波混凝土模型中单元E1与E2的位移时程曲线

    Figure  23.  Displacement time history curves of elements E1 and E2 without an elastic layer in the model

    图  24  具有不同厚度弹性层的滤波混凝土模型在0.120 ms时的纵截面应力云图

    Figure  24.  Stress contours in the longitudinal sections of the models with different thicknesses of elastic layers at 0.120 ms

    图  25  峰值为40 MPa的冲击荷载曲线

    Figure  25.  Impact load curve with the peak value of 40 MPa

    图  26  普通混凝土模型的层裂破坏模式

    Figure  26.  Spalling damage pattern of the normal concrete model

    图  27  滤波混凝土模型的层裂破坏模式

    Figure  27.  Spalling damage pattern of the filter concrete model

    图  28  峰值为40 MPa的冲击荷载作用下各模型截面S1~S4的平均应力时程曲线

    Figure  28.  Average stress time history curves of sections S1–S4 of different concrete models under impact load with the peak value of 40 MPa

    表  1  混凝土的材料参数

    Table  1.   Material parameters of concrete

    ρ/(kg·m−3σc/MPaσt/MPaE/GPaμa0y/MPaa1y
    2 440342.7300.1568.930.625
    a2y/MPa−1a0/MPaa1 a2/MPa−1a1f a2f/MPa−1
    6.437×10−311.820.4462.02×10−30.4422.957×10−3
    下载: 导出CSV

    表  2  滤波单元的材料参数

    Table  2.   Material parameters of a filter unit

    材料ρ/(kg·m−3)E/GPaμ
    114001600.44
    天然橡胶 9000.0470.42
    下载: 导出CSV

    表  3  滤波混凝土模型的几何参数

    Table  3.   Geometric parameters of the filter concrete model

    L/mmD/mml/mmr/mmT/mm
    5007475222
    下载: 导出CSV
  • [1] WU J, ZHOU Y, ZHANG R, et al. Numerical simulation of reinforced concrete slab subjected to blast loading and the structural damage assessment [J]. Engineering Failure Analysis, 2020, 118: 104926. DOI: 10.1016/j.engfailanal.2020.104926.
    [2] 汪维. 钢筋混凝土构件在爆炸载荷作用下的毁伤效应及评估方法研究 [D]. 长沙: 国防科学技术大学, 2012.

    WANG W. Study on damage effects and assessments method of reinforced concrete structural members under blast loading [D]. Changsha, Hunan, China: National University of Defense Technology, 2012.
    [3] CHEN G, HAO Y F, HAO H. 3D meso-scale modelling of concrete material in spall tests [J]. Materials and Structures, 2015, 48(6): 1887–1899. DOI: 10.1617/s11527-014-0281-z.
    [4] 郭弦. 冲击作用下混凝土中应力波传播规律研究 [D]. 长沙: 国防科学技术大学, 2010.

    GUO X. Stress wave propagation in concrete structure under impact loading [D]. Changsha, Hunan, China: National University of Defense Technology, 2010.
    [5] 巫绪涛, 廖礼. 脆性材料中应力波衰减规律与层裂实验设计的数值模拟 [J]. 爆炸与冲击, 2017, 37(4): 705–711. DOI: 10.11883/1001-1455(2017)04-0705-07.

    WU X T, LIAO L. Numerical simulation of stress wave attenuation in brittle material and spalling experiment design [J]. Explosion and Shock Waves, 2017, 37(4): 705–711. DOI: 10.11883/1001-1455(2017)04-0705-07.
    [6] 俞鑫炉, 付应乾, 董新龙, 等. 混凝土一维应力层裂实验的全场DIC分析 [J]. 力学学报, 2019, 51(4): 1064–1072. DOI: 10.6052/0459-1879-19-008.

    YU X L, FU Y Q, DONG X L, et al. Full field DIC analysis of one-dimensional spall strength for concrete [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1064–1072. DOI: 10.6052/0459-1879-19-008.
    [7] LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials [J]. Science, 2000, 289(5485): 1734–1736. DOI: 10.1126/science.289.5485.1734.
    [8] LIU Z Y, CHAN C T, SHENG P. Analytic model of phononic crystals with local resonances [J]. Physical Review B, 2005, 71(1): 014103. DOI: 10.1103/PhysRevB.71.014103.
    [9] MITCHELL S J, PANDOLFI A, ORTIZ M. Metaconcrete: designed aggregates to enhance dynamic performance [J]. Journal of the Mechanics and Physics of Solids, 2014, 65: 69–81. DOI: 10.1016/j.jmps.2014.01.003.
    [10] MITCHELL S J, PANDOLFI A, ORTIZ M. Investigation of elastic wave transmission in a metaconcrete slab [J]. Mechanics of Materials, 2015, 91: 295–303. DOI: 10.1016/j.mechmat.2015.08.004.
    [11] 张恩, 路国运, 杨会伟, 等. 超材料混凝土的带隙特征及对冲击波的衰减效应 [J]. 爆炸与冲击, 2020, 40(6): 063301. DOI: 10.11883/bzycj-2019-0252.

    ZHANG E, LU G Y, YANG H W, et al. Band gap features of metaconcrete and shock wave attenuation in it [J]. Explosion and Shock Waves, 2020, 40(6): 063301. DOI: 10.11883/bzycj-2019-0252.
    [12] JIN H X, HAO H, HAO Y F, et al. Predicting the response of locally resonant concrete structure under blast load [J]. Construction and Building Materials, 2020, 252: 118920. DOI: 10.1016/j.conbuildmat.2020.118920.
    [13] XU C, CHEN W, HAO H, et al. Static mechanical properties and stress wave attenuation of metaconcrete subjected to impulsive loading [J]. Engineering Structures, 2022, 263: 114382. DOI: 10.1016/j.engstruct.2022.114382.
    [14] OYELADE A, ABIODUN Y, SADIQ M O. Dynamic behaviour of concrete containing aggregate resonant frequency [J]. Journal of Computational Applied Mechanics, 2018, 49(2): 380–385. DOI: 10.22059/JCAMECH.2018.269048.339.
    [15] HUANG H H, SUN C T, HUANG G L. On the negative effective mass density in acoustic metamaterials [J]. International Journal of Engineering Science, 2009, 47(4): 610–617. DOI: 10.1016/j.ijengsci.2008.12.007.
    [16] LIU Z Y, CHAN C T, SHENG P. Three-component elastic wave band-gap material [J]. Physical Review B, 2002, 65(16): 165116. DOI: 10.1103/PhysRevB.65.165116.
    [17] 吴健, 白晓春, 肖勇, 等. 一种多频局域共振型声子晶体板的低频带隙与减振特性 [J]. 物理学报, 2016, 65(6): 064602. DOI: 10.7498/aps.65.064602.

    WU J, BAI X C, XIAO Y, et al. Low frequency band gaps and vibration reduction properties of a multi-frequency locally resonant phononic plate [J]. Acta Physica Sinica, 2016, 65(6): 064602. DOI: 10.7498/aps.65.064602.
    [18] EURO C. CEB-FIP model code 1990 [Z]. Lausanne, Switzerland: Thomas TelFord Sevices Ltd., 1993. DOI: 10.1680/ceb-fipmc1990.35430.
    [19] MALVAR L J, CRAWFORD J E. Dynamic increase factors for concrete [R]. Port Hueneme CA: Naval Facilities Engineering Service Center, 1998.
    [20] LI J, HAO H. Numerical study of concrete spall damage to blast loads [J]. International Journal of Impact Engineering, 2014, 68: 41–55. DOI: 10.1016/j.ijimpeng.2014.02.001.
    [21] WU H J, ZHANG Q M, HUANG F L, et al. Experimental and numerical investigation on the dynamic tensile strength of concrete [J]. International Journal of Impact Engineering, 2005, 32(1): 605–617. DOI: 10.1016/j.ijimpeng.2005.05.008.
  • 加载中
图(28) / 表(3)
计量
  • 文章访问数:  519
  • HTML全文浏览量:  125
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-08-14
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回