实时高温作用下花岗岩冲击压缩力学特性研究

黄耀莹 屈璐 李宇白 翟越 谢怡帆

黄耀莹, 屈璐, 李宇白, 翟越, 谢怡帆. 实时高温作用下花岗岩冲击压缩力学特性研究[J]. 爆炸与冲击, 2023, 43(2): 023202. doi: 10.11883/bzycj-2022-0196
引用本文: 黄耀莹, 屈璐, 李宇白, 翟越, 谢怡帆. 实时高温作用下花岗岩冲击压缩力学特性研究[J]. 爆炸与冲击, 2023, 43(2): 023202. doi: 10.11883/bzycj-2022-0196
HUANG Yaoying, QU Lu, LI Yubai, ZHAI Yue, XIE Yifan. Mechanical properties of granite under impact compression after real-time high temperature[J]. Explosion And Shock Waves, 2023, 43(2): 023202. doi: 10.11883/bzycj-2022-0196
Citation: HUANG Yaoying, QU Lu, LI Yubai, ZHAI Yue, XIE Yifan. Mechanical properties of granite under impact compression after real-time high temperature[J]. Explosion And Shock Waves, 2023, 43(2): 023202. doi: 10.11883/bzycj-2022-0196

实时高温作用下花岗岩冲击压缩力学特性研究

doi: 10.11883/bzycj-2022-0196
基金项目: 国家自然科学基金(41941019);陕西省创新人才推进计划-科研创新团队(2021TD-55);中央高校基本科研业务费专项(300102261101)
详细信息
    作者简介:

    黄耀莹(1999- ),女,硕士研究生,2021126140@chd.edu.cn

    通讯作者:

    屈 璐(1983- ),女,博士,讲师,qulu@chd.edu.cn

  • 中图分类号: O383.2

Mechanical properties of granite under impact compression after real-time high temperature

  • 摘要: 为研究实时高温作用对花岗岩冲击力学特性的影响,以川藏铁路色季拉山施工区域加里东期花岗岩为研究对象,利用分离式霍普金森杆(SHPB)及同步箱式电阻炉,对20~800 ℃实时高温下的花岗岩试件进行冲击压缩试验,分析高温作用及加载应变率对试件破碎特征、动态抗压强度及能量吸收情况的影响,基于粉晶X射线衍射分析矿物成分变化与花岗岩动力学强度的内在关联。研究表明:20~400 ℃高温试件以脆性劈裂破坏为主,碎片形态呈纺锤形,两端尖锐,而600 ℃高温试件以塑性破坏为主,形状趋于圆钝;试件峰值应力随温度升高具有先增大后减小的变化趋势,200 ℃时达到强度阈值,随后持续降低;单位体积岩石耗散能与加载应变率呈线性正相关关系,与温度呈二次函数关系,与峰值应力呈指数关系,拟合效果良好;石英、云母和长石三种主要矿物成分的含量波动、相态变化等因素共同导致花岗岩动力学强度在200 ℃后逐步劣化。
  • 图  1  标准花岗岩试件

    Figure  1.  Standard granite specimens

    图  2  SHPB系统及同步智能箱式电阻炉

    Figure  2.  SHPB system and synchronous intelligent box-type resistance furnace

    图  3  同步高温炉测试系统结构示意

    Figure  3.  Sketch of synchronous high temperature furnace test system structure

    图  4  加载应变率曲线

    Figure  4.  Strain rate curves

    图  5  整形前后波形曲线

    Figure  5.  Waveforms without and with a pulse shaper

    图  6  800 ℃实时高温破碎试件

    Figure  6.  Broken specimen at 800 ℃ real-time high temperature

    图  7  74.8 s−1应变率时,试件破碎形态

    Figure  7.  Fragmentation morphologies of the specimen at the strain rate of 74.8 s−1

    图  8  144.97 s−1应变率时,试件破碎形态

    Figure  8.  Fragmentation morphologies of the specimen at the strain rate of 144.97 s−1

    图  9  230.29 s−1应变率时,试件破碎形态

    Figure  9.  Fragmentation morphologies of the specimen at the strain rate of 230.29 s−1

    图  10  破碎试件细节

    Figure  10.  Detail of the broken specimen

    图  11  应力-应变曲线

    Figure  11.  Stress-strain curves

    图  12  峰值应力与温度、冲击荷载关系

    Figure  12.  Relationship between peak stress and temperature and strain rate

    图  13  分形维数与温度、应变率关系

    Figure  13.  Relationship between fractal dimension and temperature and strain rate

    图  14  分形维数与峰值应力关系

    Figure  14.  Relationship between fractal dimension and peak stress

    图  15  能量时程曲线

    Figure  15.  Curve of energy

    图  16  体积能量与应变率关系

    Figure  16.  Relationship between volumic energy and strain rate

    图  17  体积能量与温度关系

    Figure  17.  Relationship between volumic energy and temperature

    图  18  动态抗压强度与体积能量关系

    Figure  18.  Relationship between fractal dimension and volumic energy of granite

    图  19  不同实时高温下花岗岩X衍射图谱

    Figure  19.  X-ray diffraction patterns of granite at different real-time high temperatures

    图  20  长石、云母相对含量之和与温度的关系

    Figure  20.  Relationship between the sum of feldspar and mica content and temperature

    表  1  SHPB试验参数

    Table  1.   Parameters of the test

    气压/MPa冲击速率/(m∙s−1平均应变率/s−1
    0.25.4 74.80
    0.48.8144.97
    0.611.3 230.29
    下载: 导出CSV

    表  2  峰值应力

    Table  2.   Peak stress

    平均应变率/s−1试件峰值应力/MPa
    20 ℃200 ℃400 ℃600 ℃800 ℃
    74.80125.25132.08103.4392.5170
    144.97164.39178.38161.38114.590
    230.29188.91190.91174.00135.800
    下载: 导出CSV

    表  3  体积能量

    Table  3.   Volumic energy

    $ \bar \varepsilon $/s−1w/(J·cm−3)
    20 ℃200 ℃400 ℃600 ℃800 ℃
    74.800.490.360.460.760.49
    144.971.561.221.251.461.56
    230.293.613.243.314.403.61
    下载: 导出CSV

    表  4  矿物成分的质量分数(%)

    Table  4.   Mass fraction (%) of the components

    温度/℃石英长石云母绿泥石磁铁矿
    2053.432.27.22.25.0
    20052.535.68.41.70.5
    40077.417.13.41.40.7
    60033.350.013.2 1.50.6
    下载: 导出CSV
  • [1] 闫治国, 朱合华, 梁利. 火灾高温下隧道衬砌管片力学性能试验 [J]. 同济大学学报(自然科学版), 2012, 40(6): 823–828. DOI: 10.3969/j.issn.0253-374x.2012.06.004.

    YAN Z G, ZHU H H, LIANG L. Experimental study on mechanical performance of lining segments in fire accidents [J]. Journal of Tongji University (Natural Science), 2012, 40(6): 823–828. DOI: 10.3969/j.issn.0253-374x.2012.06.004.
    [2] MARTÍN-GAMBOA M, IRIBARREN D, DUFOUR J. On the environmental suitability of high-and low-enthalpy geothermal systems [J]. Geothermics, 2015, 53: 27–37. DOI: 10.1016/j.geothermics.2014.03.012.
    [3] 杨丹. 三次采油化学驱油技术现状与未来展望 [J]. 化学工程与装备, 2021(1): 216–217. DOI: 10.19566/j.cnki.cn35-1285/tq.2021.01.099.
    [4] 唐红梅, 周云涛, 陈洪凯, 等. 地下工程爆破对危岩稳定性的影响 [J]. 爆炸与冲击, 2015, 35(2): 278–284. DOI: 10.11883/1001-1455(2015)02-0278-07.

    TANG H M, ZHOU Y T, CHEN H K, et al. Impact study on stability of unstable rock under underground construction blasting [J]. Explosion and Shock Waves, 2015, 35(2): 278–284. DOI: 10.11883/1001-1455(2015)02-0278-07.
    [5] 罗生银, 窦斌, 田红, 等. 自然冷却后与实时高温下花岗岩物理力学性质对比试验研究 [J]. 地学前缘, 2020, 27(1): 178–184. DOI: 10.13745/j.esf.2020.1.19.

    LUO S Y, DOU B, TIAN H, et al. Comparative experimental study on physical and mechanical properties of granite after natural cooling and under real-time high temperature [J]. Earth Science Frontiers, 2020, 27(1): 178–184. DOI: 10.13745/j.esf.2020.1.19.
    [6] 范飞林, 许金余. 大直径SHPB实验中的高温加载技术及其应用 [J]. 爆炸与冲击, 2013, 33(1): 54–60. DOI: 10.11883/1001-1455(2013)01-0054-07.

    FAN F L, XU J Y. High-temperature loading techniques in large-diameter SHPB experiment and its application [J]. Explosion and Shock Waves, 2013, 33(1): 54–60. DOI: 10.11883/1001-1455(2013)01-0054-07.
    [7] 寇绍全, ALM O. 微裂隙和花岗岩的抗拉强度 [J]. 力学学报, 1987, 19(4): 366–373. DOI: 10.6052/0459-1879-1987-4-1987-045.

    KOU S Q, ALM O. Microcracks and the tensile strength of granite [J]. Acta Mechanica Sinica, 1987, 19(4): 366–373. DOI: 10.6052/0459-1879-1987-4-1987-045.
    [8] 吴刚, 翟松韬, 王宇. 高温下花岗岩的细观结构与声发射特性研究 [J]. 岩土力学, 2015, 36(S1): 351–356. DOI: 10.16285/j.rsm.2015.S1.060.

    WU G, ZHAI S T, WANG Y. Research on characteristics of mesostructure and acoustic emission of granite under high temperature [J]. Rock and Soil Mechanics, 2015, 36(S1): 351–356. DOI: 10.16285/j.rsm.2015.S1.060.
    [9] 赵阳升, 孟巧荣, 康天合, 等. 显微CT试验技术与花岗岩热破裂特征的细观研究 [J]. 岩石力学与工程学报, 2008, 27(1): 28–34. DOI: 10.3321/j.issn:1000-6915.2008.01.005.

    ZHAO Y S, MENG Q R, KANG T H, et al. Micro-CT experimental technology and meso-investigation on thermal fracturing characteristics of granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 28–34. DOI: 10.3321/j.issn:1000-6915.2008.01.005.
    [10] 赵阳升, 万志军, 张渊, 等. 岩石热破裂与渗透性相关规律的试验研究 [J]. 岩石力学与工程学报, 2010, 29(10): 1970–1976.

    ZHAO Y S, WAN Z J, ZHANG Y, et al. Experimental study of related laws of rock thermal cracking and permeability [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 1970–1976.
    [11] 张静华, 王靖涛, 赵爱国. 高温下花岗岩断裂特性的研究 [J]. 岩土力学, 1987, 8(4): 11–16. DOI: 10.16285/j.rsm.1987.04.005.

    ZHANG J H, WANG J T, ZHAO A G. Fracture properies of granite at high temperature [J]. Rock and Soil Mechanics, 1987, 8(4): 11–16. DOI: 10.16285/j.rsm.1987.04.005.
    [12] 王靖涛, 赵爱国, 黄明昌. 花岗岩断裂韧度的高温效应 [J]. 岩土工程学报, 1989, 11(6): 113–118. DOI: 10.3321/j.issn:1000-4548.1989.06.015.

    WANG J T, ZHAO A G, HUANG M C. Effect of high temperature on the fracture toughness of granite [J]. Chinese Journal of Geotechnical Engineering, 1989, 11(6): 113–118. DOI: 10.3321/j.issn:1000-4548.1989.06.015.
    [13] YIN T B, SHU R H, LI X B, et al. Comparison of mechanical properties in high temperature and thermal treatment granite [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1926–1937. DOI: 10.1016/S1003-6326(16)64311-X.
    [14] 尹土兵, 李夕兵, 殷志强, 等. 高温后砂岩静、动态力学特性研究与比较 [J]. 岩石力学与工程学报, 2012, 31(2): 273–279. DOI: 10.3969/j.issn.1000-6915.2012.02.006.

    YIN T B, LI X B, YIN Z Q, et al. Study and comparison of mechanical properties of sandstone under static and dynamic loadings after high temperature [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 273–279. DOI: 10.3969/j.issn.1000-6915.2012.02.006.
    [15] 王超, 尹土兵. 实时高温下与热处理后砂岩动态拉伸特性研究 [J]. 工程爆破, 2021, 27(6): 9–17,51. DOI: 10.19931/j.EB.20210022.

    WANG C, YIN T B. Study on dynamic tensile properties of sandstone at real-time high temperatures and after thermal treatment [J]. Engineering Blasting, 2021, 27(6): 9–17,51. DOI: 10.19931/j.EB.20210022.
    [16] 许锡昌, 刘泉声. 高温下花岗岩基本力学性质初步研究 [J]. 岩土工程学报, 2000, 22(3): 332–335. DOI: 10.3321/j.issn:1000-4548.2000.03.014.

    XU X C, LIU Q S. A preliminary study on basic mechanical properties for granite at high temperature [J]. Chinese Journal of Geotechnical Engineering, 2000, 22(3): 332–335. DOI: 10.3321/j.issn:1000-4548.2000.03.014.
    [17] 王鹏, 许金余, 刘石, 等. 高温下砂岩动态力学特性研究 [J]. 兵工学报, 2013, 34(2): 203–208. DOI: 10.3969/j.issn.1000-1093.2013.02.012.

    WANG P, XU J Y, LIU S, et al. Research on dynamic mechanical properties of sandstone at high temperature [J]. Acta Armamentarii, 2013, 34(2): 203–208. DOI: 10.3969/j.issn.1000-1093.2013.02.012.
    [18] 平琦, 吴波, 吴明静, 等. 高温状态下岩石SHPB实验方法探究 [J]. 中国多媒体与网络教学学报(上旬刊), 2021(2): 205–207.
    [19] 刘石, 许金余. 高温作用对花岗岩动态压缩力学性能的影响研究 [J]. 振动与冲击, 2014, 33(4): 195–198. DOI: 10.3969/j.issn.1000-3835.2014.04.035.

    LIU S, XU J Y. Effect of high temperature on dynamic compressive mechanical properties of granite [J]. Journal of Vibration and Shock, 2014, 33(4): 195–198. DOI: 10.3969/j.issn.1000-3835.2014.04.035.
    [20] LI Y B, ZHAI Y, WANG C S, et al. Mechanical properties of Beishan granite under complex dynamic loads after thermal treatment [J]. Engineering Geology, 2020, 267: 105481. DOI: 10.1016/j.enggeo.2020.105481.
    [21] 尹土兵. 考虑温度效应的岩石动力学行为研究 [D]. 长沙: 中南大学, 2012.

    YIN T B. Study on dynamic behavior of rocks considering thermai, effect [D]. Changsha: Central South University, 2012.
    [22] 刘贵, 周永胜. 花岗岩剪切变形与矿物成分变化的高温高压实验 [J]. 地质通报, 2020, 39(11): 1840–1849.

    LIU G, ZHOU Y S. An experimental study of shear deformation and mineral composition changes of granite under the condition of high temperature and high pressure [J]. Geological Bulletin of China, 2020, 39(11): 1840–1849.
    [23] 张森, 舒彪, 梁铭, 等. 不同冷却方式下高温花岗岩细观损伤量化和机理分析 [J]. 煤田地质与勘探, 2022, 50(2): 106–114. DOI: 10.3969/j.issn.1001-1986.2022.02.013.

    ZHANG S, SHU B, LIANG M, et al. Quantification and mechanism analysis of meso-damage of high-temperature granite under different cooling modes [J]. Coal Geology & Exploration, 2022, 50(2): 106–114. DOI: 10.3969/j.issn.1001-1986.2022.02.013.
    [24] 王春, 熊宏威, 舒荣华, 等. 高温处理后含铜矽卡岩的动态力学特性及损伤破碎特征 [J]. 中国有色金属学报, 2022, 32(9): 2801–2818.

    WANG C, XIONG H W, SHU R H, et al. Dynamic mechanical characteristic and damage-fracture behavior of deep copper-bearing skarn after high temperature treatment [J]. The Chinese Journal of Nonferrous Metals, 2022, 32(9): 2801–2818.
    [25] 徐小丽, 高峰, 张志镇, 等. 实时高温下加载速率对花岗岩力学特性影响的试验研究 [J]. 岩土力学, 2015, 36(8): 2184–2192. DOI: 10.16285/j.rsm.2015.08.008.

    XU X L, GAO F, ZHANG Z Z, et al. Experimental study of the effect of loading rates on mechanical properties of granite at real-time high temperature [J]. Rock and Soil Mechanics, 2015, 36(8): 2184–2192. DOI: 10.16285/j.rsm.2015.08.008.
    [26] 张志镇, 高峰, 高亚楠, 等. 高温影响下花岗岩孔径分布的分形结构及模型 [J]. 岩石力学与工程学报, 2016, 35(12): 2426–2438. DOI: 10.13722/j.cnki.jrme.2016.0798.

    ZHANG Z Z, GAO F, GAO Y N, et al. Fractal structure and model of pore size distribution of granite under high temperatures [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2426–2438. DOI: 10.13722/j.cnki.jrme.2016.0798.
    [27] 席道瑛. 花岗岩中矿物相变的物性特征 [J]. 矿物学报, 1994, 14(3): 223–227. DOI: 10.16461/j.cnki.1000-4734.1994.03.003.

    XI D Y. Physical characteristics of mineral phase transition in the granite [J]. Acta Mineralogica Sinica, 1994, 14(3): 223–227. DOI: 10.16461/j.cnki.1000-4734.1994.03.003.
    [28] 许金余, 刘石. 大理岩冲击加载试验碎块的分形特征分析 [J]. 岩土力学, 2012, 33(11): 3225–3229. DOI: 10.16285/j.rsm.2012.11.005.

    XU J Y, LIU S. Research on fractal characteristics of marble fragments subjected to impact loading [J]. Rock and Soil Mechanics, 2012, 33(11): 3225–3229. DOI: 10.16285/j.rsm.2012.11.005.
    [29] ZHANG Z X, KOU S Q, JIANG L G, et al. Effects of loading rate on rock fracture: fracture characteristics and energy partitioning [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5): 745–762. DOI: 10.1016/S1365-1609(00)00008-3.
    [30] 许金余, 吕晓聪, 张军, 等. 围压条件下岩石循环冲击损伤的能量特性研究 [J]. 岩石力学与工程学报, 2010, 29(S2): 4159–4165.

    XU J Y, LV X C, ZHANG J, et al. Research on energy properties of rock cyclical impact damage under confining pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 4159–4165.
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  476
  • HTML全文浏览量:  134
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-12-15
  • 网络出版日期:  2023-01-05
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回