透明陶瓷夹层结构冲击响应及BP神经网络预测

罗浩舜 牛欢欢 王木飞 陈佳君 李志强

罗浩舜, 牛欢欢, 王木飞, 陈佳君, 李志强. 透明陶瓷夹层结构冲击响应及BP神经网络预测[J]. 爆炸与冲击, 2023, 43(10): 103103. doi: 10.11883/bzycj-2022-0199
引用本文: 罗浩舜, 牛欢欢, 王木飞, 陈佳君, 李志强. 透明陶瓷夹层结构冲击响应及BP神经网络预测[J]. 爆炸与冲击, 2023, 43(10): 103103. doi: 10.11883/bzycj-2022-0199
LUO Haoshun, NIU Huanhuan, WANG Mufei, CHEN Jiajun, LI Zhiqiang. Impact response of transparent ceramic sandwich structures and its prediction by BP neural network[J]. Explosion And Shock Waves, 2023, 43(10): 103103. doi: 10.11883/bzycj-2022-0199
Citation: LUO Haoshun, NIU Huanhuan, WANG Mufei, CHEN Jiajun, LI Zhiqiang. Impact response of transparent ceramic sandwich structures and its prediction by BP neural network[J]. Explosion And Shock Waves, 2023, 43(10): 103103. doi: 10.11883/bzycj-2022-0199

透明陶瓷夹层结构冲击响应及BP神经网络预测

doi: 10.11883/bzycj-2022-0199
基金项目: 国家自然科学基金(11972244)
详细信息
    作者简介:

    罗浩舜(1996- ),男,硕士,robertl@foxmail.com

    通讯作者:

    李志强(1973- ),男,博士,教授, lizhiqiang@tyut.edu.cn

  • 中图分类号: O347.3

Impact response of transparent ceramic sandwich structures and its prediction by BP neural network

  • 摘要: 首先,选择以蓝宝石陶瓷为迎弹层、二氧化硅无机玻璃和聚碳酸酯有机玻璃为吸能层和聚氨酯为胶结材料的透明夹层结构为研究对象,采用一级轻气炮对试样进行了冲击实验,试样呈现陶瓷层弯曲失效破坏主导和冲击压缩破坏主导的2种破坏模式,通过高速摄像详细记录裂纹动态扩展过程。然后,采用Abaqus 有限元软件对多组结构层厚度配比的透明夹层结构进行120、150、180 m/s 速度的弹体冲击模拟,针对陶瓷材料引入了基于JH-2 本构模型的子程序,并结合单元删除法,对裂纹扩展和碎片飞溅过程进行了数值模拟。模拟结果与实验结果吻合较好。最后,采用BP 神经网络算法对冲击点后侧位移峰值进行了预测,单层和多层神经网络模型平均计算耗时分别为1和3 min,与位移峰值的数值模拟结果相比,2种神经网络模型预测结果的平均相对误差分别为7.6% 和3.2%。该BP 神经网络模型计算时效和精度都满足要求,相比传统消耗5 h的有限元计算,节省大量时间,可对透明夹层结构的设计提供指导。
  • 图  1  实验装置布局

    Figure  1.  Layout of experimental setup

    图  2  弹体实物和模型

    Figure  2.  Physical and model bullets

    图  3  透明夹层结构模型及实物照片

    Figure  3.  A model and a photo for a transparent sandwich structure

    图  4  冲击过程中不同时刻试样3的高速摄像图片

    Figure  4.  High-speed camera images of sample 3 at different times during impact

    图  5  冲击过程中不同时刻试样6的高速摄像图片

    Figure  5.  High-speed camera images of sample 6 at different times during impact

    图  6  弯曲失效(试样3)

    Figure  6.  Bending failure (sample 3)

    图  7  压缩失效(试样6)

    Figure  7.  Compression failure (sample 6)

    图  8  网格模型

    Figure  8.  Mesh model

    图  9  网格敏感性验证结果

    Figure  9.  Mesh sensitivity verification results

    图  10  结构层厚度配比为6 mm/3 mm/5 mm的试样在180 m/s速度弹体冲击下的破坏与裂纹扩展

    Figure  10.  Damage and crack propagation in the specimen with the structure layer thickness proportioningof 6 mm/3 mm/5 mm under the 180-m/s-bullet impact

    图  11  位移测点示意图

    Figure  11.  Schematic diagram of displacement measuring point

    图  12  在不同冲击载荷下透明夹层结构试样测点位移-时间曲线模拟结果

    Figure  12.  Simulated displacement-time curves of the two transparent sanwich structure specimens with different structure layer thickness proportions under different impact loads

    图  13  神经网络结构

    Figure  13.  Neural network structure

    图  14  单层、双层神经网络预测的测点峰值位移及有限元模拟结果

    Figure  14.  Peak displacements at measuring points predicted by single-layer and double-layer neural networks and the corresponding results by finite element simuations

    表  1  实验条件及结果

    Table  1.   Experimental conditions and the corresponding results

    试样编号 弹体速度/(m·s−1) 弹体质量/g 厚度/mm 破坏模式
    陶瓷层 无机玻璃层 有机玻璃层
    1 164.79 16.7 8 6 4 弯曲失效
    2 193.38 16.7 8 6 4 压缩失效
    3 186.28 16.7 8 6 10 弯曲失效
    4 183.84 16.7 8 8 4 压缩失效
    5 183.18 16.7 6 4 10 压缩失效
    6 184.22 16.7 6 3 5 压缩失效
    下载: 导出CSV

    表  2  模拟工况

    Table  2.   Simulated conditions

    工况 厚度/mm 弹体速度/(m·s−1)
    陶瓷 无机玻璃 有机玻璃
    1 6 3 5 120, 150, 180
    2 6 4 4 120, 150, 180
    3 6 5 5 120, 150, 180
    4 8 4 4 120, 150, 180
    5 6 8 4 120, 150, 180
    6 8 6 4 120, 150, 180
    7 6 4 10 120, 150, 180
    8 8 8 4 120, 150, 180
    9 6 6 10 120, 150, 180
    10 8 10 4 120, 150, 180
    11 6 6 10 120, 150, 180
    12 8 6 10 120, 150, 180
    13 6 6 6 120, 150, 180
    下载: 导出CSV

    表  3  陶瓷JH-2本构参数

    Table  3.   Constitutive parameters of ceramic JH-2

    A B C M N T/GPa G/GPa E/GPa K1/GPa K2/GPa
    0.889 0.29 0.0045 0.53 0.764 0.2 120.34 295 184.560 185.870
    K3/GPa $ {\sigma }_{\text{HEL}} $/GPa pHEL/GPa D1 D2 β $ {\sigma }_{\mathrm{i},\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{*}} $ $ {\sigma }_{\mathrm{f},\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{*}} $ $ \rho $/(kg·m−3)
    157.540 6 3.268 0.005 1.0 1.0 0.2 1.0044 3700
    下载: 导出CSV

    表  4  材料参数

    Table  4.   Material parameters

    材料 密度/(kg·m−3) 弹性模量/GPa 泊松比
    钨钢弹体 7800 210 0.30
    二氧化硅无机玻璃 2450 68 0.23
    聚碳酸酯有机玻璃 1200 23 0.35
    下载: 导出CSV

    表  5  单层、双层神经网络模型计算效率的对比

    Table  5.   Comparison of computational efficiencies of single-layer and double-layer neural network models

    计算方式 峰值位移/mm 峰值位移平均相对误差/% 平均计算时长
    有限元模拟 0.41 5 h
    单层BP神经网络 0.44 7.6 1 min
    双层BP神经网络 0.42 3.2 3 min
    下载: 导出CSV
  • [1] RAMISETTY M, SASTRI S, KASHALIKAR U, et al. Transparent polycrystalline cubic spinels protect and defend [J]. American Ceramic Society Bulletin, 2013, 92(2): 20–25. DOI: 10.1007/s10971-012-2957-6.
    [2] MALLIK A, BASUMAJUMDAR A, KUNDU P, et al. Some studies on nucleation, crystallization, microstructure and mechanical properties of mica glass-ceramics in the system 0.2BaO·0.8K2O·4MgO·Al2O3·6SiO2·2MgF2 [J]. Ceramics International, 2013, 39(3): 2551–2559. DOI: 10.1016/j.ceramint.2012.09.015.
    [3] 王笛. 汽车风挡玻璃冲击破坏现象高精度仿真方法开发及应用研究[D]. 广州: 华南理工大学, 2020.

    WANG D. Development of high-precison numerical algorithms for the impact fracture analysis of automotive windshield glass and the related engineering applications [D]. Guangzhou, Guangdong, China: South China University of Technology, 2020.
    [4] CHEN S W, CHEN X, WU X Q. The mechanical behaviour of polyvinyl butyral at intermediate strain rates and different temperatures [J]. Construction and Building Materials, 2018, 182: 66–79. DOI: 10.1016/j.conbuildmat.2018.06.080.
    [5] GALUPPI L, ROYER-CARFAGNI G F. Effective thickness of laminated glass beams: new expression via a variational approach [J]. Engineering Structures, 2012, 38: 53–67. DOI: 10.1016/j.engstruct.2011.12.039.
    [6] 尹怡林. 夹层复合建筑玻璃抗低速冲击性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.006729.

    YIN Y L. Study on low-speed impact property of laminated glass for construction [D]. Harbin, Heilongjiang, China: Harbin Institute of Technology, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.006729.
    [7] DENG G X, MA W, PENG Y, et al. Experimental study on laminated glass responses of high-speed trains subject to windblown sand particles loading [J]. Construction and Building Materials, 2021, 300: 124332. DOI: 10.1016/j.conbuildmat.2021.124332.
    [8] ZHANG X H, HAO H, WANG Z Q. Experimental study of laminated glass window responses under impulsive and blast loading [J]. International Journal of Impact Engineering, 2015, 78: 1–19. DOI: 10.1016/j.ijimpeng.2014.11.020.
    [9] ZHANG X H, HAO H. Experimental and numerical study of boundary and anchorage effect on laminated glass windows under blast loading [J]. Engineering Structures, 2015, 90: 96–116. DOI: 10.1016/j.engstruct.2015.02.022.
    [10] STRABBURGER E. Ballistic testing of transparent armour ceramics [J]. Journal of the European Ceramic Society, 2009, 29(2): 267–273. DOI: 10.1016/j.jeurceramsoc.2008.03.049.
    [11] GIOVANNA R, ZULLI F, ANDREOZZI L, et al. Test methods for the determination of interlayer properties in laminated glass [J]. Journal of Materials in Civil Engineering, 2017, 29(4): 04016268. DOI: 10.1061/(ASCE)MT.1943-5533.0001802.
    [12] STEINBERGER D, SANDFELD S. Machine learning-based classification of dislocation microstructures [J]. Frontiers in Materials, 2019, 6: 10. DOI: 10.3389/fmats.2019.00141.
    [13] BREIMAN L. Random Forests [J]. Machine Learning, 2001, 45(1): 5–32. DOI: 10.1023/A:1010933404324.
    [14] JAIN A K, MAO J, MOHIUDDIN K M. Artificial neural networks: a tutorial [J]. Computer, 1996, 29(3): 31–44. DOI: 10.1109/2.485891.
    [15] BASHEER I A, HAJMEER M. Artificial neural networks: fundamentals, computing, design, and application [J]. Journal of Microbiological Methods, 2000, 43(1): 3–31. DOI: 10.1016/S0167-7012(00)00201-3.
    [16] GUO K, YANG Z, YU C H, et al. Artificial intelligence and machine learning in design of mechanical materials [J]. Materials Horizons, 2021, 8(4): 1153–1172. DOI: 10.1039/D0MH01451F.
    [17] XU Y J, YOU T, DU C J. An integrated micromechanical model and BP neural network for predicting elastic modulus of 3-D multi-phase and multi-layer braided composite [J]. Composite Structures, 2015, 122: 308–315. DOI: 10.1016/j.compstruct.2014.11.052.
    [18] MAURO J C, TANDIA A, VARGHEESE K D, et al. Accelerating the design of functional glasses through modeling [J]. Chemistry of Materials , 2016, 28(12): 4267–4277. DOI: 10.1021/acs.chemmater.6b01054.
    [19] 刘源, 庞宝君. 基于贝叶斯正则化BP神经网络的铝平板超高速撞击损伤模式识别 [J]. 振动与冲击, 2016, 35(12): 22-27. DOI: 10.13465/j.cnki.jvs.2016.12.004.

    LIU Y, PANG B J. Hypervelocity impact damage pattern recognition on aluminum plates based on bayesian regularization BP neural network [J]. Journal of Vibration and Shock, 2016, 35(12): 22–27. DOI: 10.13465/j.cnki.jvs.2016.12.004.
    [20] 孟嫣然, 王星尔, 杨健, 等. 基于机器学习算法的夹层玻璃冲击破坏预测模型研究 [J]. 无机材料学报, 2021, 36(1): 61–68. DOI: 10.15541/jim20200187.

    MENG Y R, WANG X E, YANG J, et al. Research on machine learning based model for predicting the impact status of laminated glass [J]. Journal of Inorganic Materials, 2021, 36(1): 61–68. DOI: 10.15541/jim20200187.
    [21] CHEN J, XU J, YAO X, et al. Experimental investigation on the radial and circular crack propagation of PVB laminated glass subject to dynamic out-of-plane loading [J]. Engineering Fracture Mechanics, 2013, 112/113: 26–40. DOI: 10.1016/j.engfracmech.2013.09.010.
    [22] COBLE R L. Transparent alumina and method of preparation: US 3026210-A [P]. 1962-03-20.
    [23] MORGAN W L. Manufacture and characteristics of laminated glass [J]. Industrial and Engineering Chemistry, 1931, 23(5): 505–508. DOI: 10.1021/ie50257a008.
    [24] 杨震琦, 庞宝君, 王立闻, 等. JH-2模型及其在Al2O3陶瓷低速撞击数值模拟中的应用 [J]. 爆炸与冲击, 2010, 30(5): 463–471. DOI: 10.11883/1001-1455(2010)05-0463-09.

    YANG Z Q, PANG B J, WANG L W, et al. JH-2 model and its application to numerical simulation on Al2O3 ceramic under low-velocity impact [J]. Explosion and Shock Waves, 2010, 30(5): 463–471. DOI: 10.11883/1001-1455(2010)05-0463-09.
    [25] VOGL T P, MANGIS J K, RIGLER A K, et al. Accelerating the convergence of the back-propagation method [J]. Biological Cybernetics, 1988, 59(4/5): 257–263. DOI: 10.1007/BF00332914.
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  258
  • HTML全文浏览量:  86
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2023-05-29
  • 刊出日期:  2023-10-27

目录

    /

    返回文章
    返回