波形控制器对杀伤战斗部破片飞散特性影响研究

刘伟 梁争峰 阮喜军 屈可朋

刘伟, 梁争峰, 阮喜军, 屈可朋. 波形控制器对杀伤战斗部破片飞散特性影响研究[J]. 爆炸与冲击, 2023, 43(2): 023203. doi: 10.11883/bzycj-2022-0202
引用本文: 刘伟, 梁争峰, 阮喜军, 屈可朋. 波形控制器对杀伤战斗部破片飞散特性影响研究[J]. 爆炸与冲击, 2023, 43(2): 023203. doi: 10.11883/bzycj-2022-0202
LIU Wei, LIANG Zhengfeng, RUAN Xijun, QU Kepeng. A study on the influence of wave shape controller on fragment scattering characteristics of fragmentation warhead[J]. Explosion And Shock Waves, 2023, 43(2): 023203. doi: 10.11883/bzycj-2022-0202
Citation: LIU Wei, LIANG Zhengfeng, RUAN Xijun, QU Kepeng. A study on the influence of wave shape controller on fragment scattering characteristics of fragmentation warhead[J]. Explosion And Shock Waves, 2023, 43(2): 023203. doi: 10.11883/bzycj-2022-0202

波形控制器对杀伤战斗部破片飞散特性影响研究

doi: 10.11883/bzycj-2022-0202
基金项目: 国防重大基础研究专项(05020501)
详细信息
    作者简介:

    刘 伟(1992- ),男,硕士研究生,1091205427@qq.com

    通讯作者:

    梁争峰(1972- ),男,博士,研究员,2042lzf@sohu.com

  • 中图分类号: O389

A study on the influence of wave shape controller on fragment scattering characteristics of fragmentation warhead

  • 摘要: 为提升杀伤战斗部破片轴向飞散的集中度,提高战斗部的轴向杀伤威力,提出使用波形控制器控制破片的飞散方向。基于爆轰波在波形控制器界面发生反射的规律以及Shapiro公式,设计了波形控制器的形状,使用LS-DYNA有限元软件和ALE(arbitrary Lagrange-Euler)算法对破片的飞散过程进行数值计算,结合战斗部原理样机静爆试验,验证了使用波形控制器改善破片飞散特性方法的合理性。对比了有无波形控制器时破片飞散过程的差异,对无波形控制器以及波形控制器材料分别为尼龙、聚氨酯和聚四氟乙烯(polytetrafluoroethylene,PTFE)时杀伤战斗部的破片飞散速度和破片飞散角规律进行了分析。结果表明:波形控制器可以减小战斗部中心和两端位置的破片飞散速度大小差异,使中心到两端位置的破片飞散方向角变化均匀,破片在轴向的分布更加均匀;不同材料的波形控制器对破片飞散特性影响不同,波形控制器的使用减小了破片飞散角,增大了破片分布密度,提升了破片飞散的集中度。破片飞散角数值计算值与试验计算值误差在6.53%之内,与无波形控制器的杀伤战斗部原理样机相比,含波形控制器且材料为尼龙、聚氨酯和PTFE的战斗部原理样机破片飞散角分别减小了40.00%、 44.00%和46.67%。
  • 图  1  破片飞散角示意图

    Figure  1.  Schematic diagram of fragment scattering angle

    图  2  爆轰波在波形控制器界面上的反射与透射

    Figure  2.  Reflection and projection of detonation wave on wave shape controller interface

    图  3  Shapiro公式计算示意图

    Figure  3.  Shapiro formula calculation diagram

    图  4  波形控制器曲线设计示意图

    Figure  4.  Schematic diagram of wave shape controller curve design

    图  5  波形控制器模型示意图

    Figure  5.  Schematic diagram of wave shape controller model

    图  6  杀伤战斗部数值计算模型

    Figure  6.  Numerical calculation model of fragmentation warhead

    图  7  战斗部数值模型A1的破片飞散过程

    Figure  7.  Fragments scattering process of warhead numerical model A1

    图  8  战斗部数值模型A2的破片飞散过程

    Figure  8.  Fragment scattering process of warhead numerical model A2

    图  9  战斗部数值模型破片速度与破片的关系

    Figure  9.  Relationship between fragment scattering velocity and fragment number of warhead numerical model

    图  10  破片飞散速度与时间的关系

    Figure  10.  Relationship between fragment scattering velocity and time

    图  11  破片飞散方向角与破片的关系

    Figure  11.  Relationship between fragment scattering direction angle and fragment number

    图  12  数值计算破片飞散角柱状图

    Figure  12.  Histogram obtained from numeral calculation of fragment scattering angle

    图  13  杀伤战斗部原理样机照片

    Figure  13.  Photo of a prototype of the fragmentation warhead

    图  14  靶场布局示意图

    Figure  14.  Schematic diagram of the layout of the shooting range

    图  15  静爆试验高速摄影照片(战斗部A2

    Figure  15.  High-speed photography of static explosion test (warhead A2)

    图  16  静爆试验破片飞散速度柱状图

    Figure  16.  Histogram of fragment scattering velocity in static explosion test

    图  17  威力半径10 m处破片分布图(战斗部A2

    Figure  17.  Distribution map of fragments with a power radius of 10 m (warhead A2)

    图  18  破片轴向分布柱状图

    Figure  18.  Histogram of fragment axial distribution

    表  1  数值计算模型参数[15-16]

    Table  1.   Parameters of numerical calculation model[15-16]

    组件材料LS-DYNA材料类型、材料参数
    壳体*MAT_PLASTIC_KINEMATIC
    密度/(kg·m−3杨氏模量/GPa泊松比屈服应力/GPa切线模量/GPa参数β
    7 8502100.30.8851.951.0
    端盖铝合金*MAT_SIMPLIFIED_JOHNSON_COOK
    密度/(kg·m−3杨氏模量/GPa泊松比
    2 76073.00.33
    波形控制器尼龙*MAT_ELASTIC_PLASTIC_HYDRO
    密度/(kg·m−3剪切模量/GPa屈服应力/GPa
    1 1302.700.12
    聚氨酯*MAT_ELASTIC_PLASTIC_HYDRO
    密度/(kg·m−3剪切模量/GPa屈服应力/GPa
    1 1002.200.05
    PTFE*MAT_ELASTIC_PLASTIC_HYDRO
    密度/(kg·m−3剪切模量/GPa屈服应力/GPa
    2 1602.330.05
    破片*MAT_ELASTIC
    密度/(kg·m−3剪切模量/GPa泊松比
    7 890206.90.3
    主装药HMX*MAT_HIGH_EXPLOSIVE_BURN
    密度/(kg·m−3爆速/(km·s−1爆压/GPa
    1 8919.1142
    下载: 导出CSV

    表  2  破片飞散速度数值计算结果

    Table  2.   Numeral calculation results of fragment scattering velocity

    战斗部计算模型波形控制器材料破片飞散速度最大值/(m·s−1速度降低百分比/%
    A11813.70
    A2尼龙1602.311.66
    A3聚氨酯1549.414.57
    A4PTFE1510.516.72
    下载: 导出CSV

    表  3  静爆试验与数值计算破片飞散速度对比

    Table  3.   Comparison of fragment scattering velocity values between static explosion test and numerical calculation

    战斗部样机静爆试验破片飞散速度/(m·s−1数值模拟破片飞散速度/(m·s−1数值计算值与试验值误差/%
    A11891.91813.74.13
    A21695.11602.35.47
    A31633.31549.45.14
    A41591.31510.55.08
    下载: 导出CSV

    表  4  静爆试验与数值计算破片飞散角值对比

    Table  4.   Comparison of fragment scattering angle values between static explosion test and numerical calculation

    战斗部样机破片飞散角试验计算值/(°)破片飞散角数值计算值/(°)试验计算值与数值计算值误差/%
    A115.0014.026.53
    A29.009.16−1.78
    A38.508.243.06
    A48.007.921.00
    下载: 导出CSV
  • [1] 唐娇姣, 梁争峰, 陈元建. 防空反导毁伤技术现状与发展 [J]. 弹箭与制导学报, 2020, 40(1): 35–39, 45. DOI: 10.15892/j.cnki.djzdxb.2020.01.008.

    TANG J J, LIANG Z F, CHEN Y J. Present situation and development of air defense and antimissile damage technology [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(1): 35–39, 45. DOI: 10.15892/j.cnki.djzdxb.2020.01.008.
    [2] 王宝成, 袁宝慧. 防空反导破片杀伤战斗部现状与发展 [J]. 四川兵工学报, 2013, 34(9): 20–24. DOI: 10.11809/scbgxb2013.09.007.

    WANG B C, YUAN B H. Research states and trend of fragment warhead for air-defense and anti-missile [J]. Journal of Ordnance Equipment Engineering, 2013, 34(9): 20–24. DOI: 10.11809/scbgxb2013.09.007.
    [3] 李付刚, 梁民族, 李翔宇, 等. 杀伤爆破战斗部杀伤威力的多目标优化 [J]. 兵工学报, 2021, 42(S1): 11–21. DOI: 10.3969/j.issn.1000-1093.2021.S1.002.

    LI F G, LIANG M Z, LI X Y, et al. Multi-objective optimization of lethal power of blast-fragmentation warhead [J]. Acta Armamentarii, 2021, 42(S1): 11–21. DOI: 10.3969/j.issn.1000-1093.2021.S1.002.
    [4] ZHU J J, ZHENG Y, LI W B, et al. Axial distribution of fragments from the dynamic explosion fragmentation of metal shells [J]. International Journal of Impact Engineering, 2019, 123: 140–146. DOI: 10.1016/j.ijimpeng.2018.09.020.
    [5] 李茂, 高圣智, 侯海量, 等. 圆柱形装药驱动轴向预制破片飞散特性 [J]. 国防科技大学学报, 2021, 43(2): 141–147. DOI: 10.11887/j.cn.202102019.

    LI M, GAO S Z, HOU H L, et al. Projection characteristics of axial prefabricated fragments driven by cylindrical charge [J]. Journal of National University of Defense Technology, 2021, 43(2): 141–147. DOI: 10.11887/j.cn.202102019.
    [6] PANOWICZ R, KONARZEWSKI M, TRYPOLIN M. Analysis of the detonation initiation point position influence on the cylindrical fragmentation warhead effectiveness [J]. Journal of KONES, 2016, 23(1): 263–270. DOI: 10.5604/12314005.1213585.
    [7] CHEN W K, LI X Y, LU F Y, et al. Parallel control to fragments of a cylindrical structure driven by explosive inside [J]. Mathematical Problems in Engineering, 2015, 2015: 723463. DOI: 10.1155/2015/723463.
    [8] 李松楠, 张国伟, 崔小杰, 等. 起爆点位置对破片飞散方向的影响研究 [J]. 兵器装备工程学报, 2018, 39(11): 49–53. DOI: 10.11809/bqzbgcxb2018.11.011.

    LI S N, ZAHNG G W, CUI X J, et al. Influence of the location of the detonating point on the dispersion direction of fragments [J]. Journal of Ordnance Equipment Engineering, 2018, 39(11): 49–53. DOI: 10.11809/bqzbgcxb2018.11.011.
    [9] 张绍兴, 李翔宇, 丁亮亮, 等. 聚焦式战斗部破片轴向飞散控制技术 [J]. 高压物理学报, 2018, 32(1): 015103. DOI: 10.11858/gywlxb.20170512.

    ZHANG S X, LI X Y, DING L L, et al. Axial dispersion control of focusing fragment warhead [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 015103. DOI: 10.11858/gywlxb.20170512.
    [10] DHOTE K D, MURTHY K P S, RAJAN K M, et al. Statistics of fragment dispersion by explosion in a fragment generator warhead [J]. Central European Journal of Energetic Materials, 2016, 13(1): 183–197. DOI: 10.22211/cejem/64971.
    [11] 张会锁, 刘晓蕾, 罗旭. 波形控制器对杆条破片反导战斗部初始抛撒状态的影响 [J]. 战术导弹技术, 2015(2): 106–112. DOI: 10.16358/j.issn.1009-1300.2015.02.19.

    ZHANG H S, LIU X L, LUO X. Research on the influence of the initial scattering state of the pole type anti-ballistic missile warhead by controlled shock wave [J]. Tactical Missile Technology, 2015(2): 106–112. DOI: 10.16358/j.issn.1009-1300.2015.02.19.
    [12] 王树山. 终点效应学 [M]. 2版. 北京: 科学出版社, 2019.

    WANG S S. Terminal effects [M]. 2nd ed. Beijing: Science Press, 2019.
    [13] 谭振, 陈鹏万, 周强, 等. 战斗部轴向威力的增强 [J]. 爆炸与冲击, 2018, 38(4): 876–882. DOI: 10.11883/bzycj-2016-0342.

    TAN Z, CHEN P W, ZHOU Q, et al. Enhancement of axial lethality of warhead [J]. Explosion and Shock Waves, 2018, 38(4): 876–882. DOI: 10.11883/bzycj-2016-0342.
    [14] MA Y, HE Y, WANG C T, et al. Influence of lining materials on the detonation driving of fragments [J]. Journal of Mechanical Science and Technology, 2022, 36(3): 1337–1350. DOI: 10.1007/s12206-022-0223-6.
    [15] 余庆波, 王海福, 金学科, 等. 缓冲材料对活性破片战斗部爆炸驱动影响分析 [J]. 北京理工大学学报, 2013, 33(2): 121–126. DOI: 10.3969/j.issn.1001-0645.2013.02.003.

    YU Q B, WANG H F, JIN K X, et al. Influence of buffer material on explosive driven of reactive fragment warhead [J]. Transactions of Beijing Institute of Technology, 2013, 33(2): 121–126. DOI: 10.3969/j.issn.1001-0645.2013.02.003.
    [16] 王爽, 陈放, 王磊. 考虑衬层/隔层的爆炸驱动金属颗粒飞散特性研究 [J]. 兵器装备工程学报, 2022, 43(3): 87–93. DOI: 10.11809/bqzbgcxb2022.03.013.

    WANG S, CHEN F, WANG L. Dispersion characteristics of tungsten carbide particles driven by explosion considering interlayer/liner [J]. Journal of Ordnance Equipment Engineering, 2022, 43(3): 87–93. DOI: 10.11809/bqzbgcxb2022.03.013.
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  503
  • HTML全文浏览量:  484
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11
  • 修回日期:  2022-07-21
  • 网络出版日期:  2022-09-09
  • 刊出日期:  2023-02-25

目录

    /

    返回文章
    返回