Molecular dynamics study on spallation in single-crystal and nanocrystalline tin
-
摘要: 低熔点金属的层裂是目前延性金属动态断裂的基础科学问题之一。采用非平衡态分子动力学方法模拟了冲击压力在13.5~61.0 GPa下单晶和纳米多晶锡的经典层裂和微层裂过程。研究结果表明:在加载阶段,冲击速度不影响单晶模型中的波形演化规律,但影响纳米多晶模型中的波形演化规律,其中经典层裂中晶界滑移是影响应力波前沿宽度的重要因素;在单晶模型中,经典层裂和微层裂中孔洞成核位置位于高势能处;在纳米多晶模型中,经典层裂中的孔洞多在晶界(含三晶界交界处)处成核,并沿晶定向长大,产生沿晶断裂,而微层裂中孔洞在晶界和晶粒内部成核,导致沿晶断裂、晶内断裂和穿晶断裂;孔洞体积分数呈现指数增长,相同冲击速度下单晶和纳米多晶Sn孔洞体积分数变化规律一致;经典层裂中孔洞体积分数曲线的两个转折点分别表示孔洞成核与长大的过渡和材料从损伤到断裂的灾变性转变。Abstract: One of the fundamental scientific problems of dynamic fracture of ductile metals is spallation of low melting point metals. The classical spallation and micro-spallation of single-crystal (SC) and nanocrystal (NC) tin were carried out using the non-equilibrium molecular dynamics (NEMD) at shock pressures of 13.5−61.0 GPa. In order to achieve the spallation in the SC and NC models, the piston-target method was utilized. Specifically, the rigid piston was assigned an initial velocity, then the piston impacted the target to generate stress wave, and the stress waveform was controlled by adjusting the loading time after the length of the model along the shock direction was determined. The simulation results show that: during the loading stage, the shock wave velocity has no influence on the waveform evolution of the SC Sn model, but it does have an effect on the waveform evolution of the NC Sn model, in which the front width of the stress wave in classical spallation of the NC Sn model is mainly affected by grain boundary sliding. The void nucleation sites in classical spallation and micro-spallation are found at high potential energies in the SC model. In the NC model, for the classic spallation, voids mostly nucleate at grain boundaries (including the triple junctions of the grain boundaries) and grow along grain boundaries, resulting in intergranular fractures; for the micro-spallation, voids nucleate at the grain boundary and inside the grain, resulting in intergranular fracture, intragranular fracture, and transgranular fracture. The void volume fraction increases exponentially, and the variation law of void volume fraction of SC and NC Sn is the same under the same impact velocity. The two turning points of the void volume fraction curve in classical spallation represent the transition from nucleation to growth and the catastrophic transition from damage to fracture.
-
Key words:
- NEMD /
- single-crystal and nanocrystal tin /
- Stress wave evolution /
- fracture mode /
- void volume fraction
-
可膨胀石墨受热膨胀后成为中空状粒子, 形似蠕虫, 漂浮在空中能够有效干扰毫米波; 不同规格的可膨胀石墨膨胀后可以得到1~8 mm甚至更长的粒子, 因此有望使用一种材料遮蔽干扰不同的波长, 它在发烟剂的应用中具有很大的潜力。实验表明, 爆炸法能够快速并有效地在指定空域形成膨胀石墨型气溶胶云团, 但爆炸实验成本高、风险大[1-3]。
若能计算出膨胀石墨燃爆剂的JWL[4-5]状态方程参数, 就可以用LS-DYNA数值模拟研究代替部分实验研究, 从而达到降低实验成本、提高研究效率的目的。一般来说, JWL状态方程参数需要通过圆筒实验及二维流体动力学程序确定。本文中提出一种JWL状态方程的参数近似解法, 即通过凝聚炸药等熵线的物态方程推导出目标方程, 通过差分进化法拟合得出膨胀石墨燃爆剂JWL状态方程的参数。
1. JWL状态方程及应用
JWL状态方程是由J.W.Kury等[6-7]提出的, 该方程的未知参数需要通过圆筒实验及二维流体动力学程序来确定, 它不显含化学反应, 能够比较精确地描述爆轰产物的膨胀驱动做功过程。JWL状态方程的具体形式如下:
p=A(1−ωR1V)e−R1V+B(1−ωR2V)e−R2V+ωEV (1) 式中:p为爆轰产物的压力, V为爆轰产物的相对比容, E为爆轰产物的比内能。A、B、R1、R2、ω为待拟合参数, 也称经验(调节)常数。
在LS-DYNA中, 对于炸药材料的定义需要输入JWL状态方程的A、B、R1、R2、ω等参数值。
2. 膨胀石墨燃爆剂JWL状态方程关键参数的拟合
要拟合得到膨胀石墨燃爆剂JWL状态方程的参数, 需要找到能够描述膨胀石墨燃爆剂爆炸时p -V关系的方程作为目标方程。那么对于凝聚炸药, 忽略初始压力p0和初始内能E0, 凝聚炸药的质量守恒、动量守恒、能量守恒与C-J条件(相切条件)方程, 即凝聚炸药爆轰参数方程[8]为:
{D2=v20pH−p0v0−vHu2H=(pH−p0)(v0−vH)eH−e0=(1/2)(pH+p0)(v0−vH)+Qv(∂p∂v)S=−pH−p0v0−vH (2) 式中:u0、uH分别表示原始爆炸物的质点速度和爆轰波反应末端介质的质点速度; p0、T0、ρ0、v0分别表示原始爆炸物的压力、温度、密度和比容; pH、TH、ρH、vH分别表示爆轰波反应末端断面处的压力、温度、密度和比容; e0、eH分别表示原始爆炸物和爆轰波反应末端的内能; Qv表示爆轰反应释放出的化学能。
凝聚炸药爆轰产物状态方程为:
p=Aρk+BvT (3) 式中:A、B、k都是与炸药性质有关的常数。Aρk表示冷压强, BvT表示热压强, 热压强对压力的作用比冷压强小得多[9], 因此可将(3)式简化为:
p=Aρk=Avk (4) 方程(4)为凝聚炸药爆轰产物的近似状态方程, 由于其中没有温度项, 该方程可近似为等熵方程, 本文中称为凝聚炸药等熵线物态方程。其中, k是等熵常数, 在CJ点的k值一般为3左右, 本文中取为3。
那么方程组(2)可以简化成如下形式:
{ρH=k+1kρ0pH=1k+1ρ0D2uH=1k+1DD=√2(k2−1)Qv (5) 方程组(5)即凝聚态炸药爆轰波参数近似计算方程。
将
中的v用JWL状态方程中的相对比容V来表示。令v=v0V, 则
p=A(v0V)k=Aρk0Vk=MVk (6) 式中:
为常数。将方程(5)代入方程(6), 得:
A=pvk=pHvkH=ρ0D2k+1(kk+1v0)k (7) M=Aρk0=ρ0D2k+1(kk+1v0)kρk0=ρ0D2k+1(kk+1)k (8) 那么只要已知炸药的密度ρ0、爆速D, 就可以根据方程(5)和方程(7)求解得到目标方程:
p=MVk=ρ0D2k+1(kk+1)kVk (9) 式中:V取0~7, 因为在
=7之前圆筒实验中圆柱壳体运动规律与实验运动规律相符合, 本文中取0.5~3。然后利用LstOpt或MATLAB软件中的差分进化法拟合出A、B、R1、R2、ω。
实验时采用的膨胀石墨燃爆剂配方为黑火药和可膨胀石墨的混合物, 黑火药/可膨胀石墨质量之比为3:2, 其装药密度ρ=1.2 g/cm3; 根据经验公式[9]可计算出膨胀石墨燃爆剂的爆速D≈850 m/s。当k=3时, 根据公式(5)和(8), 计算得到pH=216.8 MPa, M=0.091 5, 那么拟合目标函数方程可表示为:
y=0.0915x3 (10) 利用LstOpt或MATLAB数据处理软件, 采用差分进化法和遗传算法相结合的方法, 对方程(1)参数进行拟合。参数拟合结果如表 1所示, 表中Emax表示最大误差。与其对应的拟合曲线如图 1所示。
表 1 几组拟合参数及其误差Table 1. Several groups of fitting parameters and max error数据组 A B R1 R2 ω Emax/% Value(a) 0.413 8.000 1.977 5.570 0.103 3.02 Value(b) 0.058 1.729 1.046 3.107 0.043 8.02 Value(c) 0.105 0.869 1.813 2.401 0.109 20.05 Value(d) 0.412 3.841 2.057 4.597 0.166 2.30 从表 1中可以看出, Value(d)组数据最大误差为2.30%, 精度比较高, 选取其作为最终拟合结果。当然这5个参数值不是确定不变的, 在满足一定精度条件下, 只要选取其中精度较高的一组参数即可。
3. 数值模拟与分析
圆筒为轴对称结构, 可在柱坐标系中建立轴对称计算模型, 如图 2所示。图 2中OCDE区为圆筒内混合炸药部分, ABCD区为铜管部分, 在E点直接起爆。OE边的长度为圆筒长度, ED和EA的长度为铜管的内径和外径。JWL参数采用Value(d)组数据带入计算。
图 3为圆筒初分网格图, 图 4为45 μs时圆筒网格变形图, 此刻圆筒上端部分已经充分膨胀, 炸药爆轰波继续向下传播。
利用后处理软件LS-PREPOST, 得出圆筒A点的Δr -t(半径变化-时间)曲线如图 5所示。
4. 圆筒实验验证
圆筒实验[10-11]是专门用于确定炸药爆轰产物JWL状态方程参数和评定炸药做功的标准化实验, 其实验原理图如图 6所示, 圆筒平行放置于支架上, 高速扫描相机通过金属板狭缝记录燃爆剂稳定爆轰段圆筒膨胀距离。
圆筒实验数据一般被拟合成如下形式:
{t=a+b(R−R0)+red(R−R0)v=[b+rded(R−R0)]−1Ekc=v2c/2 (11) 式中:t为圆筒壁膨胀的时间; (R-R0)为圆筒壁膨胀的距离, 用Δr表示; a、b、c、d为根据实验数据得到的拟合系数; vc为不同膨胀距离(R-R0)相对应的圆筒壁的速度; Ekc为不同膨胀距离相对应的比动能。
实验时, 圆筒半径R0=25 mm, 膨胀石墨燃爆剂装药密度ρ0=1.2 g/cm3, 爆速D≈850 m/s。膨胀石墨燃爆剂圆筒实验结果如表 2所示。
表 2 圆筒实验结果Table 2. Data of cylinder testt/μs (R-R0)/mm 25 0.0 30 0.0 35 0.5 40 1.0 45 2.0 50 2.5 55 3.0 60 3.5 65 4.0 70 4.5 75 5.0 80 5.5 85 6.0 90 6.6 95 7.2 100 8.5 实验所得圆筒Δr -t曲线如图 7所示。
分析图 5、7中数据, 可以得出模拟曲线与实验曲线符合非常好, 经过MATLAB对2组数据进行分析后, 得出其误差最大为3.3%。
5. 结束语
把凝聚炸药等熵线物态方程作为目标方程拟合出膨胀石墨燃爆剂的JWL状态方程的关键参数, 然后利用拟合的JWL参数对圆筒实验模型进行数值模拟得到Δr -t曲线, 最后用圆筒实验得出圆筒的Δr -t曲线。通过MATLAB对两组数据进行分析, 得出其误差最大为3.3%。实验结果表明:基于凝聚炸药等熵线物态方程拟合膨胀石墨燃爆剂JWL状态方程参数的方法可行, 满足实际应用需求。
-
表 1 材料物态变化与层裂类型
Table 1. Matter state variation and spallation classification
-
[1] ANTOUN T, CURRAN D R, RAZORENOV S V, et al. Spall fracture [M]. New York: Springer, 2003. DOI: 10.1007/b97226. [2] HOPKINSON B. X. A method of measuring the pressure produced in the detonation of high, explosives or by the impact of bullets [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1914, 213(497): 437–456. DOI: 10.1098/rsta.1914.0010. [3] KANEL G I, RAZORENOV S V, BOGATCH A, et al. Spall fracture properties of aluminum and magnesium at high temperatures [J]. Journal of Applied Physics, 1996, 79(11): 8310–8317. DOI: 10.1063/1.362542. [4] JOHNSON J N, GRAY III G T, BOURNE N K. Effect of pulse duration and strain rate on incipient spall fracture in copper [J]. Journal of Applied Physics, 1999, 86(9): 4892–4901. DOI: 10.1063/1.371527. [5] DALTON D A, BREWER J L, BERNSTEIN A C, et al. Laser-induced spallation of aluminum and Al alloys at strain rates above 2×106 s−1 [J]. Journal of Applied Physics, 2008, 104(1): 013526. DOI: 10.1063/1.2949276. [6] SOULARD L, BONTAZ-CARION J, CUQ-LELANDAIS J P. Experimental and numerical study of the tantalum single crystal spallation [J]. The European Physical Journal B, 2012, 85(10): 332. DOI: 10.1140/epjb/e2012-30269-9. [7] BRAGOV A M, BALANDIN V V, KONSTANTINOV A Y, et al. High-rate deformation and spall fracture of some metals [J]. Procedia Engineering, 2017, 197: 260–269. DOI: 10.1016/j.proeng.2017.08.103. [8] TURLEY W D, FENSIN S J, HIXSON R S, et al. Spall response of single-crystal copper [J]. Journal of Applied Physics, 2018, 123(5): 055102. DOI: 10.1063/1.5012267. [9] JOHNSON J N. Dynamic fracture and spallation in ductile solids [J]. Journal of Applied Physics, 1981, 52(4): 2812–2825. DOI: 10.1063/1.329011. [10] TONKS D L, ZUREK A K, THISSELL W R. Void coalescence model for ductile damage [J]. AIP Conference Proceedings, 2002, 620(1): 611–614. DOI: 10.1063/1.1483613. [11] CHEN D N, YU Y Y, YIN Z H, et al. On the validity of the traditional measurement of spall strength [J]. International Journal of Impact Engineering, 2005, 31(7): 811–824. DOI: 10.1016/j.ijimpeng.2004.04.006. [12] KANEL G I. Spall fracture: methodological aspects, mechanisms and governing factors [J]. International Journal of Fracture, 2010, 163(1): 173–191. DOI: 10.1007/s10704-009-9438-0. [13] ZHANG H, PENG H, PEI X Y, et al. Critical damage degree model of spall fracture in ductile metals [J]. Journal of Applied Physics, 2021, 130(12): 125105. DOI: 10.1063/5.0060603. [14] IKKURTHI V R, CHATURVEDI S. Use of different damage models for simulating impact-driven spallation in metal plates [J]. International Journal of Impact Engineering, 2004, 30(3): 275–301. DOI: 10.1016/S0734-743X(03)00070-8. [15] TANG M X, E J C, WANG L, et al. Loading-path dependent deformation of nanocrystalline Ta under single- and double-shock, and quasi-isentropic compression [J]. Journal of Applied Physics, 2017, 121(11): 115901. DOI: 10.1063/1.4978359. [16] JIANG Z X, ZHONG Z, XIE P C, et al. Characteristics of the damage evolution and the free surface velocity profile with dynamic tensile spallation [J]. Journal of Applied Physics, 2022, 131(12): 125104. DOI: 10.1063/5.0082361. [17] DAVISON L, GRAHAM R A. Shock compression of solids [J]. Physics Reports, 1979, 55(4): 255–379. DOI: 10.1016/0370-1573(79)90026-7. [18] PINEAU A, BENZERGA A A, PARDOEN T. Failure of metals I: brittle and ductile fracture [J]. Acta Materialia, 2016, 107: 424–483. DOI: 10.1016/j.actamat.2015.12.034. [19] RINEHART J S. Some quantitative data bearing on the scabbing of metals under explosive attack [J]. Journal of Applied Physics, 1951, 22(5): 555–560. DOI: 10.1063/1.1700005. [20] TULER F R, BUTCHER B M. A criterion for the time dependence of dynamic fracture [J]. International Journal of Fracture Mechanics, 1968, 4(4): 431–437. DOI: 10.1007/BF00186808. [21] CURRAN D R, SEAMAN L, SHOCKEY D A. Dynamic failure in solids [J]. Physics Today, 1977, 30(1): 46–55. DOI: 10.1063/1.3037367. [22] 叶雁, 汪伟, 李作友, 等. 用高速摄影和脉冲同轴全息照相联合诊断微射流 [J]. 高压物理学报, 2009, 23(6): 471–475. DOI: 10.11858/gywlxb.2009.06.012.YE Y, WANG W, LI Z Y, et al. High-speed photography and pulsed in-line holography diagnostics of microjet [J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 471–475. DOI: 10.11858/gywlxb.2009.06.012. [23] BONTAZ-CARION J, PELLEGRINI Y P. X-ray microtomography analysis of dynamic damage in tantalum [J]. Advanced Engineering Materials, 2006, 8(6): 480–486. DOI: 10.1002/adem.200600058. [24] CHU G B, XI T, YU M H, et al. High-energy X-ray radiography of laser shock loaded metal dynamic fragmentation using high-intensity short-pulse laser [J]. Review of Scientific Instruments, 2018, 89(11): 115106. DOI: 10.1063/1.5034401. [25] JONES D R, FENSIN S J, MORROW B M, et al. Shock recompaction of spall damage [J]. Journal of Applied Physics, 2020, 127: 245901. DOI: 10.1063/5.0011337. [26] SIGNOR L, DE RESSÉGUIER T, DRAGON A, et al. Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-loaded tin [J]. International Journal of Impact Engineering, 2010, 37(8): 887–900. DOI: 10.1016/j.ijimpeng.2010.03.001. [27] 邵建立, 王裴, 秦承森, 等. 铁冲击相变的分子动力学研究 [J]. 物理学报, 2007, 56(9): 5389–5393. DOI: 10.7498/aps.56.5389.SHAO J L, WANG P, QIN C S, et al. Shock-induced phase transformations of iron studied with molecular dynamics [J]. Acta Physica Sinica, 2007, 56(9): 5389–5393. DOI: 10.7498/aps.56.5389. [28] 邓小良, 李博, 汤观晴, 等. 分子动力学方法在金属材料动态响应研究中的应用 [J]. 高压物理学报, 2019, 33(3): 030103. DOI: 10.11858/gywlxb.20190750.DENG X L, LI B, TANG G Q, et al. Application of molecular dynamics simulation to dynamic response of metals [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030103. DOI: 10.11858/gywlxb.20190750. [29] 王嘉楠, 伍鲍, 何安民, 等. 强冲击下金属材料动态损伤与破坏的分子动力学模拟研究进展 [J]. 高压物理学报, 2021, 35(4): 040101. DOI: 10.11858/gywlxb.20210747.WANG J N, WU B, HE A M, et al. Research progress on dynamic damage and failure of metal materials under shock loading with molecular dynamics simulation [J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040101. DOI: 10.11858/gywlxb.20210747. [30] LUO S N, GERMANN T C, TONKS D L. Spall damage of copper under supported and decaying shock loading [J]. Journal of Applied Physics, 2009, 106(12): 123518. DOI: 10.1063/1.3271414. [31] SHAO J L, WANG P, HE A M, et al. Spall strength of aluminium single crystals under high strain rates: molecular dynamics study [J]. Journal of Applied Physics, 2013, 114(17): 173501. DOI: 10.1063/1.4828709. [32] HAHN E N, GERMANN T C, RAVELO R, et al. On the ultimate tensile strength of tantalum [J]. Acta Materialia, 2017, 126: 313–328. DOI: 10.1016/j.actamat.2016.12.033. [33] HAHN E N, FENSIN S J, GERMANN T C, et al. Orientation dependent spall strength of tantalum single crystals [J]. Acta Materialia, 2018, 159: 241–248. DOI: 10.1016/j.actamat.2018.07.073. [34] DE RESSÉGUIER T, SIGNOR L, DRAGON A, et al. Spallation in laser shock-loaded tin below and just above melting on release [J]. Journal of Applied Physics, 2007, 102(7): 073535. DOI: 10.1063/1.2795436. [35] SOULARD L, DURAND O. Observation of phase transitions in shocked tin by molecular dynamics [J]. Journal of Applied Physics, 2020, 127(16): 165901. DOI: 10.1063/5.0003089. [36] XIANG M Z, HU H B, CHEN J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055005. DOI: 10.1088/0965-0393/21/5/055005. [37] XIANG M Z, HU H B, CHEN J. Spalling and melting in nanocrystalline Pb under shock loading: molecular dynamics studies [J]. Journal of Applied Physics, 2013, 113(14): 144312. DOI: 10.1063/1.4799388. [38] XIANG M Z, CHEN J, SU R. Spalling behaviors of Pb induced by ramp-wave-loading: effects of the loading rise time studied by molecular dynamics simulations [J]. Computational Materials Science, 2016, 117: 370–379. DOI: 10.1016/j.commatsci.2016.02.004. [39] LIAO Y, XIANG M Z, ZENG X G, et al. Molecular dynamics study of the micro-spallation of single crystal tin [J]. Computational Materials Science, 2014, 95: 89–98. DOI: 10.1016/j.commatsci.2014.07.014. [40] SHAO J L, WANG C, WANG P, et al. Atomistic simulations and modeling analysis on the spall damage in lead induced by decaying shock [J]. Mechanics of Materials, 2019, 131: 78–83. DOI: 10.1016/j.mechmat.2019.01.012. [41] WANG K, ZHANG F G, HE A M, et al. An atomic view on spall responses of release melted lead induced by decaying shock loading [J]. Journal of Applied Physics, 2019, 125(15): 155107. DOI: 10.1063/1.5081920. [42] WANG X X, HE A M, ZHOU T T, et al. Spall damage in single crystal tin under shock wave loading: a molecular dynamics simulation [J]. Mechanics of Materials, 2021, 160: 103991. DOI: 10.1016/j.mechmat.2021.103991. [43] RAVELO R, BASKES M. Equilibrium and thermodynamic properties of grey, white, and liquid tin [J]. Physical Review Letters, 1997, 79(13): 2482–2485. DOI: 10.1103/PhysRevLett.79.2482. [44] HIREL P. Atomsk: a tool for manipulating and converting atomic data files [J]. Computer Physics Communications, 2015, 197: 212–219. DOI: 10.1016/j.cpc.2015.07.012. [45] STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. DOI: 10.1088/0965-0393/18/1/015012. [46] MAILLET J B, MARESCHAL M, SOULARD L, et al. Uniaxial Hugoniostat: a method for atomistic simulations of shocked materials [J]. Physical Review E, 2000, 63(1): 016121. DOI: 10.1103/PhysRevE.63.016121. [47] REED E J, FRIED L E, JOANNOPOULOS J D. A method for tractable dynamical studies of single and double shock compression [J]. Physical Review Letters, 2003, 90(23): 235503. DOI: 10.1103/PhysRevLett.90.235503. [48] SAPOZHNIKOV F A, IONOV G V, DREMOV V V, et al. The embedded atom model and large-scale MD simulation of tin under shock loading [J]. Journal of Physics: Conference Series, 2014, 500(3): 032017. DOI: 10.1088/1742-6596/500/3/032017. [49] MARSH S P. LASL shock hugoniot data [M]. Berkeley: University of California Press, 1980: 141–142. [50] MABIRE C, HÉREIL P L. Shock induced polymorphic transition and melting of tin [J]. AIP Conference Proceedings, 2000, 505(1): 93–96. DOI: 10.1063/1.1303429. [51] WEIR S T, LIPP M J, FALABELLA S, et al. High pressure melting curve of tin measured using an internal resistive heating technique to 45 GPa [J]. Journal of Applied Physics, 2012, 111(12): 123529. DOI: 10.1063/1.4730968. [52] LAZICKI A, RYGG J R, COPPARI F, et al. X-Ray diffraction of solid tin to 1.2 TPa [J]. Physical Review Letters, 2015, 115(7): 075502. DOI: 10.1103/PhysRevLett.115.075502. [53] BRIGGS R, DAISENBERGER D, LORD O T, et al. High-pressure melting behavior of tin up to 105 GPa [J]. Physical Review B, 2017, 95(5): 054102. DOI: 10.1103/PhysRevB.95.054102. [54] MA W, ZHU W J, HOU Y. A comparative study on shock compression of nanocrystalline Al and Cu: shock profiles and microscopic views of plasticity [J]. Journal of Applied Physics, 2013, 114(16): 163504. DOI: 10.1063/1.4826624. [55] TIAN X, CUI J Z, MA K P, et al. Shock-induced plasticity and damage in single-crystalline Cu at elevated temperatures by molecular dynamics simulations [J]. International Journal of Heat and Mass Transfer, 2020, 158: 120013. DOI: 10.1016/j.ijheatmasstransfer.2020.120013. [56] YANG X, ZENG X G, WANG J, et al. Atomic-scale modeling of the void nucleation, growth, and coalescence in Al at high strain rates [J]. Mechanics of Materials, 2019, 135: 98–113. DOI: 10.1016/j.mechmat.2019.05.005. [57] QI M L, LUO C, HE H L, et al. Damage property of incompletely spalled aluminum under shock wave loading [J]. Journal of Applied Physics, 2012, 111(4): 043506. DOI: 10.1063/1.3681301. [58] WANG Y G, HE H L, WANG L L. Critical damage evolution model for spall failure of ductile metals [J]. Mechanics of Materials, 2013, 56: 131–141. DOI: 10.1016/j.mechmat.2012.10.004. [59] STRACHAN A, ÇAĞIN T, GODDARD III W A. Critical behavior in spallation failure of metals [J]. Physical Review B, 2001, 63(6): 060103. DOI: 10.1103/PhysRevB.63.060103. [60] YANG X, ZENG X G, WANG F, et al. Spallation fracture dependence on shock intensity and loading duration in single-crystal aluminum [J]. Computational Materials Science, 2022, 210: 111060. DOI: 10.1016/j.commatsci.2021.111060. [61] 贺红亮. 动态拉伸断裂的物理判据研究 [J]. 高压物理学报, 2013, 27(2): 153–161. DOI: 10.11858/gywlxb.2013.02.001.HE H L. Physical criterion of dynamic tensile fracture [J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 153–161. DOI: 10.11858/gywlxb.2013.02.001. 期刊类型引用(1)
1. 郝博,刘力维,姜琦. 基于混合算法计算炸药JWL状态方程参数的研究. 工程爆破. 2024(02): 42-48+97 . 百度学术
其他类型引用(1)
-