Experimental study on blast resistance performance and damage repair of precast concrete column under close-in explosion
-
摘要: 为研究近爆荷载作用下装配式钢筋混凝土(precast concrete,PC)柱的抗爆性能与受损后的加固修复性能,开展了足尺PC柱化爆试验与受损柱加固修复轴压试验研究。共开展了3次化爆试验,获得了PC柱的动力响应与损伤破坏试验数据,分析了PC柱与现浇钢筋混凝土(reinforced concrete, RC)柱试验结果的差异。近爆荷载作用下,PC柱呈现出局部损伤破坏模式,爆心附近混凝土剥落,出现斜裂缝,装配位置的交界面出现贯穿裂缝,锚浆搭接PC柱比灌浆套筒PC柱的损伤更加严重。两种装配形式的PC柱整体上具有与RC柱相近的抗爆性能,但装配界面削弱了PC柱的整体性与抗剪切能力,是PC柱典型的薄弱位置。轴压试验结果表明,分别采用置换混凝土和置换后外包碳纤维增强复合材料(carbon fiber reinforcement polymer, CFRP)布的方式加固受损的两根PC柱,其轴向承载力均超过了同规格未受损柱的试验承载力和设计承载力。Abstract: In order to investigate the anti-explosion performance and post-blast performance after reinforcement/repair of precast concrete (PC) columns under close-in explosion, the explosion test of full-scale PC column and axial compression test of repaired blast-induced damage PC column were conducted. The PC columns with the two widely used assembly connections, i.e., half grout sleeve connection and slurry anchor lap connection, were selected to investigate the effect of connection type on blast resistance and to compare the damage and dynamic response with the reinforced concrete (RC) column of the same specification. The explosion test results show that PC columns had a local damage failure mode. The concrete spalling and oblique cracks occurred near the explosion center and penetrating cracks appeared on the interface of the assembly position. The damage of the anchor slurry lapped PC column was more severe than the grouting sleeve PC column. The PC columns of the two assembly forms had comparable dynamic response and damage characteristics as the RC column in general, but the assembly interface weakened the integrity and shear resistance of the PC column because of its discontinuity. It is the typical weak position of the PC column and should be noticed in design and protection. The axial compression test results show that the axial bearing capacity of the PC column repaired by concrete replacement exceeds 20.8% and 30.6% compared to the undamaged column test value and the calculated value of the same specification respectively. The exceeding proportion of the PC column repaired by concrete replacement and wrapping carbon fiber reinforcement polymer (CFRP) sheet is 38.3% and 49.6% respectively. The results show that it is feasible to reinforce and repair the damaged PC column using the concrete replacement or combining concrete replacement with the wrapping CFRP sheet method, which can meet the requirements of axial bearing capacity.
-
Key words:
- close-in blast load /
- PC column /
- dynamic response /
- damage failure /
- reinforcement and repair
-
表 1 试验构件主要参数
Table 1. Parameters of specimen
试件 装配形式 混凝土强度等级 钢筋伸出长度/mm P-1 套筒连接 C40 180 P-2 锚浆搭接 C40 724 表 2 PC柱与RC柱的损伤尺寸差值比例
Table 2. Proportion of damage size between PC column and RC column
试件 迎爆面 侧面1 侧面2 背爆面 P-1 −17.1% −6.3% 3.8% 3.8% P-2 −4.3% 6.3% 11.3% 11.3% 表 3 响应峰值与残余位移
Table 3. Peak and residual displacement
试件 响应峰值/mm 残余位移/mm S2 S3 S2 S3 P-1 42 31 10 7.0 P-2 46 34 12 7.0 R-1 43 34 10 8.2 -
[1] HAN Q, LI X P, XU K, et al. Shear strength and cracking mechanism of precast bridge columns with grouted sleeve connections [J]. Engineering Structures, 2021, 230: 111616. DOI: 10.1016/j.engstruct.2020.111616. [2] LIU Y, LI X P, ZHENG X H, et al. Experimental study on seismic response of precast bridge piers with double-grouted sleeve connections [J]. Engineering Structures, 2020, 221: 111023. DOI: 10.1016/j.engstruct.2020.111023. [3] FUJIKURA S, BRUNEAU M, LOPEZ-GARCIA D. Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading [J]. Journal of Bridge Engineering, 2008, 13(6): 586–594. DOI: 10.1061/(ASCE)1084-0702(2008)13:6(586). [4] 师燕超, 李忠献. 爆炸荷载作用下钢筋混凝土柱的动力响应与破坏模式 [J]. 建筑结构学报, 2008, 29(4): 112–117. DOI: 10.14006/j.jzjgxb.2008.04.017.SHI Y C, LI Z X. Dynamic responses and failure modes of RC columns under blast loading [J]. Journal of Building Structures, 2008, 29(4): 112–117. DOI: 10.14006/j.jzjgxb.2008.04.017. [5] National Academies of Sciences, Engineering, and Medicine. Blast-resistant highway bridges: design and detailing guidelines [R]. Washington, DC: The National Academies Press, 2010. DOI: 10.17226/22971. [6] WILLIAMSON E B, BAYRAK O, DAVIS C, et al. Performance of bridge columns subjected to blast loads. I: experimental program [J]. Journal of Bridge Engineering, 2011, 16(6): 693–702. DOI: 10.1061/(ASCE)BE.1943-5592.0000220. [7] WILLIAMSON E B, BAYRAK O, DAVIS C, et al. Performance of bridge columns subjected to blast loads. II: results and recommendations [J]. Journal of Bridge Engineering, 2011, 16(6): 703–710. DOI: 10.1061/(ASCE)BE.1943-5592.0000221. [8] 李忠献, 钟波, 师燕超. 爆炸作用下RC柱损伤快速评估模型 [J]. 天津大学学报(自然科学与工程技术版), 2014, 47(11): 973–978. DOI: 10.11784/tdxbz201310018.LI Z X, ZHONG B, SHI Y C, et al. Fast assessment model for damage of RC columns under blast loading [J]. Journal of Tianjin University (Science and Technology), 2014, 47(11): 973–978. DOI: 10.11784/tdxbz201310018. [9] 宗周红, 唐彪, 高超, 等. 钢筋混凝土墩柱抗爆性能试验 [J]. 中国公路学报, 2017, 30(9): 51–60. DOI: 10.19721/j.cnki.1001-7372.2017.09.007.ZONG Z H, TANG B, GAO C, et al. Experiment on blast-resistance performance of reinforced concrete piers [J]. China Journal of Highway and Transport, 2017, 30(9): 51–60. DOI: 10.19721/j.cnki.1001-7372.2017.09.007. [10] YUAN S J, HAO H, ZONG Z H, et al. A study of RC bridge columns under contact explosion [J]. International Journal of Impact Engineering, 2017, 109: 378–390. DOI: 10.1016/j.ijimpeng.2017.07.017. [11] LIU L, ZONG Z H, LI M H. Numerical study of damage modes and assessment of circular RC pier under noncontact explosions [J]. Journal of Bridge Engineering, 2018, 23(9): 04018061. DOI: 10.1061/(asce)be.1943-5592.0001273. [12] CHEN L, HU Y, REN H Q, et al. Performances of the RC column under close-in explosion induced by the double-end-initiation explosive cylinder [J]. International Journal of Impact Engineering, 2019, 132: 103326. DOI: 10.1016/j.ijimpeng.2019.103326. [13] LIU H T, YAN Q S, DU X L. Seismic performance comparison between precast beam joints and cast-in-place beam joints [J]. Advances in Structural Engineering, 2017, 20(9): 1299–1314. DOI: 10.1177/1369433216674952. [14] YAN Q S, SUN B W, LIU X M, et al. The effect of assembling location on the performance of precast concrete beam under impact load [J]. Advances in Structural Engineering, 2018, 21(8): 1211–1222. DOI: 10.1177/1369433217737119. [15] LI H W, CHEN W S, HAO H. Dynamic response of precast concrete beam with wet connection subjected to impact loads [J]. Engineering Structures, 2019, 191: 247–263. DOI: 10.1016/j.engstruct.2019.04.051. [16] LI H W, CHEN W S, HUANG Z J, et al. Dynamic response of monolithic and precast concrete joint with wet connections under impact loads [J]. Engineering Structures, 2022, 250: 113434. DOI: 10.1016/j.engstruct.2021.113434. [17] SUN W B, YANG C C, FAN W, et al. Vehicular impacts on precast concrete bridge piers with grouted sleeve connections [J]. Engineering Structures, 2022, 267: 114600. DOI: 10.1016/j.engstruct.2022.114600. [18] 李文培, 宋春明, 王子甲, 等. 装配式复合墙结构抗爆性能试验 [J]. 解放军理工大学学报(自然科学版), 2012, 13(1): 69–74. DOI: 10.3969/j.issn.1009-3443.2012.01.013.LI W P, SONG C M, WANG Z J, et al. Experimental investigation of mechanical behavior of assembled compound periphery structure subjected to blast loads [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2012, 13(1): 69–74. DOI: 10.3969/j.issn.1009-3443.2012.01.013. [19] TRAN D T, PHAM T M, HAO H, et al. Blast behaviour of precast segmental vs monolithic concrete beams prestressed with unbonded tendons: a numerical investigation [J]. International Journal of Impact Engineering, 2023, 173: 104434. DOI: 10.1016/j.ijimpeng.2022.104434. [20] LI J, HAO H, WU C Q. Numerical study of precast segmental column under blast loads [J]. Engineering Structures, 2017, 134: 125–137. DOI: 10.1016/j.engstruct.2016.12.028. [21] YU J, YU X F, TANG J H, et al. Local damage of precast concrete columns with grout sleeve connections under contact detonation [J]. Engineering Structures, 2022, 265: 114499. DOI: 10.1016/j.engstruct.2022.114499. [22] 于旭峰, 汤剑辉, 陈祖鹏. 套筒灌浆连接PC柱的接触爆炸试验研究 [J]. 混凝土与水泥制品, 2022(5): 46–49. DOI: 10.19761/j.1000-4637.2022.05.046.04.YU X F, TANG J H, CHEN Z P. Test research of contact detonation of PC columns with grouting sleeve connections [J]. China Concrete and Cement Products, 2022(5): 46–49. DOI: 10.19761/j.1000-4637.2022.05.046.04. [23] 张伟. 装配整体式混凝土结构钢筋连接技术研究 [D]. 西安: 长安大学, 2015.ZHANG W. The technique study of reinforcement splice in assemble monolithic concrete structure [D]. Xi’an: Chang’an University, 2015. [24] 中华人民共和国住房和城乡建设部. 装配式混凝土结构技术规程: JGJ 1—2014 [S]. 北京: 中国建筑工业出版社, 2014.Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for precast concrete structures: JGJ 1—2014 [S]. Beijing: China Architecture & Building Press, 2014. [25] 汪潇, 张晓. 钢筋混凝土框架柱加固技术 [J]. 工程抗震与加固改造, 2015, 37(4): 116–121. DOI: 10.16226/j.issn.1002-8412.2015.04.017.WANG X, ZHANG X. Reinforcement technology of reinforced concrete frame columns [J]. Earthquake Resistant Engineering and Retrofitting, 2015, 37(4): 116–121. DOI: 10.16226/j.issn.1002-8412.2015.04.017. [26] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 混凝土结构加固设计规范: GB 50367—2013 [S]. 北京: 中国建筑工业出版社, 2014.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB 50367-2013 Code for design of strengthening concrete structure: GB 50367—2013 [S]. Beijing: China Architecture & Building Press, 2014. [27] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2011.Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010 [S]. Beijing: China Architecture & Building Press, 2011.