近爆荷载作用下装配式钢筋混凝土柱抗爆性能及受损加固试验研究

吕辰旭 闫秋实 李亮

吕辰旭, 闫秋实, 李亮. 近爆荷载作用下装配式钢筋混凝土柱抗爆性能及受损加固试验研究[J]. 爆炸与冲击, 2023, 43(6): 063301. doi: 10.11883/bzycj-2022-0225
引用本文: 吕辰旭, 闫秋实, 李亮. 近爆荷载作用下装配式钢筋混凝土柱抗爆性能及受损加固试验研究[J]. 爆炸与冲击, 2023, 43(6): 063301. doi: 10.11883/bzycj-2022-0225
LYU Chenxu, YAN Qiushi, LI Liang. Experimental study on blast resistance performance and damage repair of precast concrete column under close-in explosion[J]. Explosion And Shock Waves, 2023, 43(6): 063301. doi: 10.11883/bzycj-2022-0225
Citation: LYU Chenxu, YAN Qiushi, LI Liang. Experimental study on blast resistance performance and damage repair of precast concrete column under close-in explosion[J]. Explosion And Shock Waves, 2023, 43(6): 063301. doi: 10.11883/bzycj-2022-0225

近爆荷载作用下装配式钢筋混凝土柱抗爆性能及受损加固试验研究

doi: 10.11883/bzycj-2022-0225
基金项目: 国家自然科学基金(52178445)
详细信息
    作者简介:

    吕辰旭(1996- ),男,博士研究生, chenxulv@qq.com

    通讯作者:

    闫秋实(1983- ),男,博士,教授, yqs2011@bjut.edu.cn

  • 中图分类号: O383.2;TU375.3

Experimental study on blast resistance performance and damage repair of precast concrete column under close-in explosion

  • 摘要: 为研究近爆荷载作用下装配式钢筋混凝土(precast concrete,PC)柱的抗爆性能与受损后的加固修复性能,开展了足尺PC柱化爆试验与受损柱加固修复轴压试验研究。共开展了3次化爆试验,获得了PC柱的动力响应与损伤破坏试验数据,分析了PC柱与现浇钢筋混凝土(reinforced concrete, RC)柱试验结果的差异。近爆荷载作用下,PC柱呈现出局部损伤破坏模式,爆心附近混凝土剥落,出现斜裂缝,装配位置的交界面出现贯穿裂缝,锚浆搭接PC柱比灌浆套筒PC柱的损伤更加严重。两种装配形式的PC柱整体上具有与RC柱相近的抗爆性能,但装配界面削弱了PC柱的整体性与抗剪切能力,是PC柱典型的薄弱位置。轴压试验结果表明,分别采用置换混凝土和置换后外包碳纤维增强复合材料(carbon fiber reinforcement polymer, CFRP)布的方式加固受损的两根PC柱,其轴向承载力均超过了同规格未受损柱的试验承载力和设计承载力。
  • 图  1  试件配筋设计

    Figure  1.  Reinforcement for specimen

    图  2  试件构造(单位:mm)

    Figure  2.  Constructions for specimens (unit: mm)

    图  3  装配连接构造

    Figure  3.  Precast connection constructions

    图  4  试件加工

    Figure  4.  Specimen processing

    图  5  试验布置

    Figure  5.  Test arrangement

    图  6  试验用TNT炸药(单位:mm)

    Figure  6.  TNT charges used in test (unit: mm)

    图  7  千斤顶施加初始轴压

    Figure  7.  Lifting axial load with a hydraulic jack

    图  8  测点布置(单位:mm)

    Figure  8.  Layout of measuring points (unit: mm)

    图  9  试件P-1的损伤破坏情况

    Figure  9.  Blast-induced damage of specimen P-1

    图  10  试件P-1的损伤细节(单位:mm)

    Figure  10.  Damage characteristics of specimen P-1 (unit: mm)

    图  11  试件P-1的装配交界面的裂缝

    Figure  11.  Crack development at the bottom of specimen P-1

    图  12  试件P-2的损伤破坏情况

    Figure  12.  Blast-induced damage of specimen P-2

    图  13  试件P-2的损伤细节(单位:mm)

    Figure  13.  Damage characteristics of specimen P-2 (unit: mm)

    图  14  试件P-2的核心区裂缝

    Figure  14.  Core area cracks of specimen P-2

    图  15  表面损伤尺寸示意图

    Figure  15.  Schematic diagram of surface damage

    图  16  PC柱的损伤尺寸

    Figure  16.  Damage size of PC columns

    图  17  试件P-1柱的位移响应曲线

    Figure  17.  Displacement response curve of specimen P-1

    图  18  试件P-2柱的位移响应曲线

    Figure  18.  Displacement response curve of specimen P-2

    图  19  试件R-1的损伤破坏

    Figure  19.  Blast-induced damage of specimen R-1

    图  20  试件R-1的损伤细节(单位:mm)

    Figure  20.  Damage characteristics of specimen R-1 (unit: mm)

    图  21  试件R-1的底端裂缝

    Figure  21.  Cracks at the bottom of specimen R-1

    图  22  PC柱与RC柱的损伤破坏对比

    Figure  22.  Damage comparison between PC column and RC column

    图  23  测点S2的位移响应对比

    Figure  23.  Displacement response comparison of measure point S2

    图  24  测点S3的位移响应对比

    Figure  24.  Displacement response comparison of measure point S3

    图  25  受损试件的加固修复过程

    Figure  25.  Reinforcement and repair of damaged specimens

    图  26  7200 t压力试验机

    Figure  26.  7200 t pressure testing machine

    图  27  竖向位移传感计

    Figure  27.  Vertical displacement transducer

    图  28  试件柱的轴压破坏形态

    Figure  28.  Axial compressive failure patterns of columns

    图  29  试件荷载-位移曲线

    Figure  29.  Load-displacement curves of columns

    表  1  试验构件主要参数

    Table  1.   Parameters of specimen

    试件装配形式混凝土强度等级钢筋伸出长度/mm
    P-1套筒连接C40180
    P-2锚浆搭接C40724
    下载: 导出CSV

    表  2  PC柱与RC柱的损伤尺寸差值比例

    Table  2.   Proportion of damage size between PC column and RC column

    试件迎爆面侧面1侧面2背爆面
    P-1−17.1%−6.3% 3.8% 3.8%
    P-2 −4.3% 6.3%11.3%11.3%
    下载: 导出CSV

    表  3  响应峰值与残余位移

    Table  3.   Peak and residual displacement

    试件响应峰值/mm 残余位移/mm
    S2S3S2S3
    P-14231107.0
    P-24634127.0
    R-14334108.2
    下载: 导出CSV
  • [1] HAN Q, LI X P, XU K, et al. Shear strength and cracking mechanism of precast bridge columns with grouted sleeve connections [J]. Engineering Structures, 2021, 230: 111616. DOI: 10.1016/j.engstruct.2020.111616.
    [2] LIU Y, LI X P, ZHENG X H, et al. Experimental study on seismic response of precast bridge piers with double-grouted sleeve connections [J]. Engineering Structures, 2020, 221: 111023. DOI: 10.1016/j.engstruct.2020.111023.
    [3] FUJIKURA S, BRUNEAU M, LOPEZ-GARCIA D. Experimental investigation of multihazard resistant bridge piers having concrete-filled steel tube under blast loading [J]. Journal of Bridge Engineering, 2008, 13(6): 586–594. DOI: 10.1061/(ASCE)1084-0702(2008)13:6(586).
    [4] 师燕超, 李忠献. 爆炸荷载作用下钢筋混凝土柱的动力响应与破坏模式 [J]. 建筑结构学报, 2008, 29(4): 112–117. DOI: 10.14006/j.jzjgxb.2008.04.017.

    SHI Y C, LI Z X. Dynamic responses and failure modes of RC columns under blast loading [J]. Journal of Building Structures, 2008, 29(4): 112–117. DOI: 10.14006/j.jzjgxb.2008.04.017.
    [5] National Academies of Sciences, Engineering, and Medicine. Blast-resistant highway bridges: design and detailing guidelines [R]. Washington, DC: The National Academies Press, 2010. DOI: 10.17226/22971.
    [6] WILLIAMSON E B, BAYRAK O, DAVIS C, et al. Performance of bridge columns subjected to blast loads. I: experimental program [J]. Journal of Bridge Engineering, 2011, 16(6): 693–702. DOI: 10.1061/(ASCE)BE.1943-5592.0000220.
    [7] WILLIAMSON E B, BAYRAK O, DAVIS C, et al. Performance of bridge columns subjected to blast loads. II: results and recommendations [J]. Journal of Bridge Engineering, 2011, 16(6): 703–710. DOI: 10.1061/(ASCE)BE.1943-5592.0000221.
    [8] 李忠献, 钟波, 师燕超. 爆炸作用下RC柱损伤快速评估模型 [J]. 天津大学学报(自然科学与工程技术版), 2014, 47(11): 973–978. DOI: 10.11784/tdxbz201310018.

    LI Z X, ZHONG B, SHI Y C, et al. Fast assessment model for damage of RC columns under blast loading [J]. Journal of Tianjin University (Science and Technology), 2014, 47(11): 973–978. DOI: 10.11784/tdxbz201310018.
    [9] 宗周红, 唐彪, 高超, 等. 钢筋混凝土墩柱抗爆性能试验 [J]. 中国公路学报, 2017, 30(9): 51–60. DOI: 10.19721/j.cnki.1001-7372.2017.09.007.

    ZONG Z H, TANG B, GAO C, et al. Experiment on blast-resistance performance of reinforced concrete piers [J]. China Journal of Highway and Transport, 2017, 30(9): 51–60. DOI: 10.19721/j.cnki.1001-7372.2017.09.007.
    [10] YUAN S J, HAO H, ZONG Z H, et al. A study of RC bridge columns under contact explosion [J]. International Journal of Impact Engineering, 2017, 109: 378–390. DOI: 10.1016/j.ijimpeng.2017.07.017.
    [11] LIU L, ZONG Z H, LI M H. Numerical study of damage modes and assessment of circular RC pier under noncontact explosions [J]. Journal of Bridge Engineering, 2018, 23(9): 04018061. DOI: 10.1061/(asce)be.1943-5592.0001273.
    [12] CHEN L, HU Y, REN H Q, et al. Performances of the RC column under close-in explosion induced by the double-end-initiation explosive cylinder [J]. International Journal of Impact Engineering, 2019, 132: 103326. DOI: 10.1016/j.ijimpeng.2019.103326.
    [13] LIU H T, YAN Q S, DU X L. Seismic performance comparison between precast beam joints and cast-in-place beam joints [J]. Advances in Structural Engineering, 2017, 20(9): 1299–1314. DOI: 10.1177/1369433216674952.
    [14] YAN Q S, SUN B W, LIU X M, et al. The effect of assembling location on the performance of precast concrete beam under impact load [J]. Advances in Structural Engineering, 2018, 21(8): 1211–1222. DOI: 10.1177/1369433217737119.
    [15] LI H W, CHEN W S, HAO H. Dynamic response of precast concrete beam with wet connection subjected to impact loads [J]. Engineering Structures, 2019, 191: 247–263. DOI: 10.1016/j.engstruct.2019.04.051.
    [16] LI H W, CHEN W S, HUANG Z J, et al. Dynamic response of monolithic and precast concrete joint with wet connections under impact loads [J]. Engineering Structures, 2022, 250: 113434. DOI: 10.1016/j.engstruct.2021.113434.
    [17] SUN W B, YANG C C, FAN W, et al. Vehicular impacts on precast concrete bridge piers with grouted sleeve connections [J]. Engineering Structures, 2022, 267: 114600. DOI: 10.1016/j.engstruct.2022.114600.
    [18] 李文培, 宋春明, 王子甲, 等. 装配式复合墙结构抗爆性能试验 [J]. 解放军理工大学学报(自然科学版), 2012, 13(1): 69–74. DOI: 10.3969/j.issn.1009-3443.2012.01.013.

    LI W P, SONG C M, WANG Z J, et al. Experimental investigation of mechanical behavior of assembled compound periphery structure subjected to blast loads [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2012, 13(1): 69–74. DOI: 10.3969/j.issn.1009-3443.2012.01.013.
    [19] TRAN D T, PHAM T M, HAO H, et al. Blast behaviour of precast segmental vs monolithic concrete beams prestressed with unbonded tendons: a numerical investigation [J]. International Journal of Impact Engineering, 2023, 173: 104434. DOI: 10.1016/j.ijimpeng.2022.104434.
    [20] LI J, HAO H, WU C Q. Numerical study of precast segmental column under blast loads [J]. Engineering Structures, 2017, 134: 125–137. DOI: 10.1016/j.engstruct.2016.12.028.
    [21] YU J, YU X F, TANG J H, et al. Local damage of precast concrete columns with grout sleeve connections under contact detonation [J]. Engineering Structures, 2022, 265: 114499. DOI: 10.1016/j.engstruct.2022.114499.
    [22] 于旭峰, 汤剑辉, 陈祖鹏. 套筒灌浆连接PC柱的接触爆炸试验研究 [J]. 混凝土与水泥制品, 2022(5): 46–49. DOI: 10.19761/j.1000-4637.2022.05.046.04.

    YU X F, TANG J H, CHEN Z P. Test research of contact detonation of PC columns with grouting sleeve connections [J]. China Concrete and Cement Products, 2022(5): 46–49. DOI: 10.19761/j.1000-4637.2022.05.046.04.
    [23] 张伟. 装配整体式混凝土结构钢筋连接技术研究 [D]. 西安: 长安大学, 2015.

    ZHANG W. The technique study of reinforcement splice in assemble monolithic concrete structure [D]. Xi’an: Chang’an University, 2015.
    [24] 中华人民共和国住房和城乡建设部. 装配式混凝土结构技术规程: JGJ 1—2014 [S]. 北京: 中国建筑工业出版社, 2014.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for precast concrete structures: JGJ 1—2014 [S]. Beijing: China Architecture & Building Press, 2014.
    [25] 汪潇, 张晓. 钢筋混凝土框架柱加固技术 [J]. 工程抗震与加固改造, 2015, 37(4): 116–121. DOI: 10.16226/j.issn.1002-8412.2015.04.017.

    WANG X, ZHANG X. Reinforcement technology of reinforced concrete frame columns [J]. Earthquake Resistant Engineering and Retrofitting, 2015, 37(4): 116–121. DOI: 10.16226/j.issn.1002-8412.2015.04.017.
    [26] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 混凝土结构加固设计规范: GB 50367—2013 [S]. 北京: 中国建筑工业出版社, 2014.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. GB 50367-2013 Code for design of strengthening concrete structure: GB 50367—2013 [S]. Beijing: China Architecture & Building Press, 2014.
    [27] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2011.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for design of concrete structures: GB 50010—2010 [S]. Beijing: China Architecture & Building Press, 2011.
  • 加载中
图(29) / 表(3)
计量
  • 文章访问数:  453
  • HTML全文浏览量:  128
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 修回日期:  2023-01-18
  • 网络出版日期:  2023-02-21
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回