激波诱导环形SF6气柱演化的机理

郑纯 何勇 张焕好 陈志华

郑纯, 何勇, 张焕好, 陈志华. 激波诱导环形SF6气柱演化的机理[J]. 爆炸与冲击, 2023, 43(1): 013201. doi: 10.11883/bzycj-2022-0226
引用本文: 郑纯, 何勇, 张焕好, 陈志华. 激波诱导环形SF6气柱演化的机理[J]. 爆炸与冲击, 2023, 43(1): 013201. doi: 10.11883/bzycj-2022-0226
ZHENG Chun, HE Yong, ZHANG Huanhao, CHEN Zhihua. On the evolution mechanism of the shock-accelerated annular SF6 cylinder[J]. Explosion And Shock Waves, 2023, 43(1): 013201. doi: 10.11883/bzycj-2022-0226
Citation: ZHENG Chun, HE Yong, ZHANG Huanhao, CHEN Zhihua. On the evolution mechanism of the shock-accelerated annular SF6 cylinder[J]. Explosion And Shock Waves, 2023, 43(1): 013201. doi: 10.11883/bzycj-2022-0226

激波诱导环形SF6气柱演化的机理

doi: 10.11883/bzycj-2022-0226
基金项目: 国家自然科学基金(12072162, 12102196);中国博士后科学基金(2022M711642);江苏省自然科学基金(BK20210322)
详细信息
    作者简介:

    郑 纯(1992- ),男,博士,博士后,Chun9211@njust.edu.cn

    通讯作者:

    陈志华(1967- ),男,博士,教授,chenzh@njust.edu.cn

  • 中图分类号: O354.5

On the evolution mechanism of the shock-accelerated annular SF6 cylinder

  • 摘要: 基于可压缩多组分Navier-Stokes控制方程,结合5阶加权本质无振荡格式以及网格自适应加密技术和level-set方法,数值模拟了平面激波(Ma=1.23)与环形SF6气柱(内外半径分别为8和17.5 mm)界面的相互作用过程。相比于之前的实验结果,数值模拟结果揭示了入射激波在界面内4次透射过程中的复杂波系结构,观察到透射激波在内部界面传播时形成自由前导折射结构并向自由前导冯诺依曼折射结构转换的波系演变过程;另外,界面内的复杂激波结构诱导内部下游界面上的涡量发生了3次反向;在界面演化后期,内部界面形成的“射流”结构与下游界面相互作用,诱导界面形成一对主涡、一对次级涡以及一个反向“射流”结构。定量分析了环形界面长度、宽度、位移、环量以及混合率的变化情况,结果表明,内部气柱的存在减弱了前期小涡结构合并形成大涡结构过程中对界面高度与长度的影响,同时提高了重质气体与环境气体的混合率。
  • 图  1  平面激波冲击圆形和环形SF6气柱界面的实验和数值密度纹影对比

    Figure  1.  Comparison of experimental and numerical density schlieren seqences of shock-accelerated circular and annular SF6 cylinder interface

    图  2  圆形SF6气柱界面特征点位移的实验(圆点)和数值(实线)结果定量对比

    Figure  2.  Quantitative comparison of experimental (dots) and numerical (lines) diagrams of the characteristic points on the shocked SF6 cylinder

    图  3  计算模型示意图

    Figure  3.  Illustration of the computational model

    图  4  网格收敛性验证

    Figure  4.  Grid convergence validation

    图  5  平面激波冲击环形SF6界面演化过程的密度纹影图

    Figure  5.  Density schlieren sequences of the evolution process of the shock-accelerated annular SF6 interface

    图  6  环形SF6气柱界面内上激波结构演化过程中的密度纹影图(上)和压力云图(下)

    Figure  6.  Density schlieren (upper) and pressure contour (lower) of the shock wave structure evolution in the annular SF6 interface

    图  7  界面的长度和高度

    Figure  7.  Histories of the length and height of interfaces

    图  8  界面位移

    Figure  8.  Histories of displacement of interfaces

    图  9  环形SF6界面上涡量$ \omega $的演化云图

    Figure  9.  Evolution of the vorticity $ \omega $ on the annular SF6 interface

    图  10  界面上总环量和环量绝对值随时间变化

    Figure  10.  Histories of the total circulation and the absolute value of the circulation of the interfaces

    图  11  上半部分界面总环量、正环量和负环量随时间变化

    Figure  11.  Histories of the total circulation, the positive circulation and the negative circulation of the upper half part interfaces

    图  12  气体混合率随时间的变化情况

    Figure  12.  Histories of the gas mixing rate

    表  1  气体参数

    Table  1.   Gas parameters

    气体名称比热比摩尔质量/(g·mol−1密度/(kg·m−3
    空气1.399 28.9671.23
    SF61.103128.4915.45
    下载: 导出CSV
  • [1] LINDL J D, MCCRORY R L, CAMPBELL E M. Progress toward ignition and burn propagation in inertial confinement fusion [J]. Physics Today, 1992, 45(9): 32–40. DOI: 10.1063/1.881318.
    [2] YANG J, KUBOTA T, ZUKOSKI E E. Applications of shock-induced mixing to supersonic combustion [J]. AIAA Journal, 1993, 31(5): 854–862. DOI: 10.2514/3.11696.
    [3] BALAKRISHNAN K, MENON S. Characterization of the mixing layer resulting from the detonation of heterogeneous explosive charges [J]. Flow Turbulence and Combustion, 2011, 87(4): 639–671. DOI: 10.1007/s10494-011-9349-9.
    [4] 罗喜胜, 翟志刚, 司廷, 等. 激波诱导下的气体界面不稳定性实验研究 [J]. 力学进展, 2014, 44(1): 201407. DOI: 10.6052/1000-0992-14-028.

    LUO X S, ZHAI Z G, SI T, et al. Experimental study on the interfacial instability induced by shock waves [J]. Advances in Mechanics, 2014, 44(1): 201407. DOI: 10.6052/1000-0992-14-028.
    [5] ZOU L Y, LIU C L, TAN D W, et al. On interaction of shock wave with elliptic gas cylinder [J]. Journal of Visualization, 2010, 13(4): 347–353. DOI: 10.1007/s12650-010-0053-y.
    [6] 黄熙龙, 廖深飞, 邹立勇, 等. 激波与椭圆形重气柱相互作用的PLIF实验 [J]. 爆炸与冲击, 2017, 37(5): 829–836. DOI: 10.11883/1001-1455(2017)05-0829-08.

    HUANG X L, LIAO S F, ZOU L Y, et al. Experiment on interaction of shock and elliptic heavy-gas cylinder by using PLIF [J]. Explosion and Shock Waves, 2017, 37(5): 829–836. DOI: 10.11883/1001-1455(2017)05-0829-08.
    [7] ZHAI Z G, WANG M H, SI T, et al. On the interaction of a planar shock with a light polygonal interface [J]. Journal of Fluid Mechanics, 2014, 757: 800–816. DOI: 10.1017/jfm.2014.516.
    [8] LUO X S, WANG M H, SI T, et al. On the interaction of a planar shock with an SF6 polygon [J]. Journal of Fluid Mechanics, 2015, 773: 366–394. DOI: 10.1017/jfm.2015.257.
    [9] 沙莎, 陈志华, 薛大文, 等. 激波与SF6梯形气柱相互作用的数值模拟 [J]. 物理学报, 2014, 63(8): 085205. DOI: 10.7498/aps.63.085205.

    SHA S, CHEN Z H, XUE D W, et al. Richtmyer-Meshkov instability induced by the interaction between shock wave and SF6 isosceles trapezoid cylinders [J]. Acta Physica Sinica, 2014, 63(8): 085205. DOI: 10.7498/aps.63.085205.
    [10] 廖深飞, 邹立勇, 刘金宏, 等. 反射激波作用重气柱的Richtmyer-Meshkov不稳定性的实验研究 [J]. 爆炸与冲击, 2016, 36(1): 87–92. DOI: 10.11883/1001-1455(2016)01-0087-06.

    LIAO S F, ZOU L Y, LIU J H, et al. Experimental study of Richtmyer-Meshkov instability in a heavy gas cylinder interacting with reflected shock wave [J]. Explosion and Shock Waves, 2016, 36(1): 87–92. DOI: 10.11883/1001-1455(2016)01-0087-06.
    [11] 王震, 王涛, 柏劲松, 等. 流场非均匀性对非平面激波诱导的Richtmyer-Meshkov不稳定性影响的数值研究 [J]. 爆炸与冲击, 2019, 39(4): 041407. DOI: 10.11883/bzycj-2018-0342.

    WANG Z, WANG T, BAI J S, et al. Numerical study of non-uniformity effect on Richtmyer-Meshkov instability induced by non-planar shock wave [J]. Explosion and Shock Waves, 2019, 39(4): 041407. DOI: 10.11883/bzycj-2018-0342.
    [12] ORLICZ G C, BALASUBRAMANIAN S, PRESTRIDGE K P. Incident shock Mach number effects on Richtmyer-Meshkov mixing in a heavy gas layer [J]. Physics of Fluids, 2013, 25(11): 114101. DOI: 10.1063/1.4827435.
    [13] SHANKAR S K, LELE S K. Numerical investigation of turbulence in reshocked Richtmyer-Meshkov unstable curtain of dense gas [J]. Shock Waves, 2014, 24(1): 79–95. DOI: 10.1007/s00193-013-0478-z.
    [14] ZENG W G, PAN J H, SUN Y T, et al. Turbulent mixing and energy transfer of reshocked heavy gas curtain [J]. Physics of Fluids, 2018, 30(6): 064106. DOI: 10.1063/1.5032275.
    [15] DE FRAHAN M T H, MOVAHED P, JOHNSEN E. Numerical simulations of a shock interacting with successive interfaces using the discontinuous Galerkin method: the multilayered Richtmyer-Meshkov and Rayleigh-Taylor instabilities [J]. Shock Waves, 2015, 25(4): 329–345. DOI: 10.1007/s00193-014-0539-y.
    [16] LIANG Y, LIU L L, ZHAI Z G, et al. Evolution of shock-accelerated heavy gas layer [J]. Journal of Fluid Mechanics, 2020, 886: A7. DOI: 10.1017/jfm.2019.1052.
    [17] WANG G, WANG Y N, LI D D, et al. Numerical study on shock-accelerated gas rings [J]. Physics of Fluids, 2020, 32(2): 026102. DOI: 10.1063/1.5135762.
    [18] SAMTANEY R, ZABUSKY N J. Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws [J]. Journal of Fluid Mechanics, 1994, 269: 45–78. DOI: 10.1017/s0022112094001485.
    [19] YANG J, KUBOTA T, ZUKOSKI E E. A model for characterization of a vortex pair formed by shock passage over a light-gas inhomogeneity [J]. Journal of Fluid Mechanics, 1994, 258: 217–244. DOI: 10.1017/s0022112094003307.
    [20] 冯莉莉, 翟志刚, 司廷, 等. 激波诱导双层气柱演化的偏心效应研究 [J]. 气体物理, 2022, 7(2): 13–25. DOI: 10.19527/j.cnki.2096-1642.0959.

    FENG L L, ZHAI Z G, SI T, et al. Eccentric effect on evolution of shock-accelerated double-layer gas cylinder [J]. Physics of Gases, 2022, 7(2): 13–25. DOI: 10.19527/j.cnki.2096-1642.0959.
    [21] FENG L L, XU J R, ZHAI Z G, et al. Evolution of shock-accelerated double-layer gas cylinder [J]. Physics of Fluids, 2021, 33(8): 086105. DOI: 10.1063/5.0062459.
    [22] LOMBARDINI M, HILL D J, PULLIN D I, et al. Atwood ratio dependence of Richtmyer-Meshkov flows under reshock conditions using large-eddy simulations [J]. Journal of Fluid Mechanics, 2011, 670: 439–480. DOI: 10.1017/s0022112010005367.
    [23] WANG X S, YANG D G, WU J Q, et al. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder [J]. Physics of Fluids, 2015, 27(6): 064104. DOI: 10.1063/1.4922613.
    [24] NIEDERHAUS J H J, GREENOUGH J A, OAKLEY J G, et al. A computational parameter study for the three-dimensional shock-bubble interaction [J]. Journal of Fluid Mechanics, 2008, 594: 85–124. DOI: 10.1017/s0022112007008749.
    [25] ZHENG C, ZHANG H H, CHEN Z H, et al. Interaction of cylindrical converging shocks with an equilateral triangular SF6 cylinder [J]. Physics of Fluids, 2019, 31(8): 086104. DOI: 10.1063/1.5094671.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  98
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 修回日期:  2022-10-24
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2023-01-05

目录

    /

    返回文章
    返回