Simulation analysis of the effect of clearance on motion characteristic of metal flyer under detonation loading
-
摘要: 在炸药爆轰驱动含间隙双层钢飞片情况下,两层钢飞片间的间隙会影响外层飞片的首次、二次入射波波形及强度,进而影响外层飞片自由面速度等。为了更好地认识爆轰加载条件下金属飞片的运动特征,需要深入研究间隙对该动力学过程的影响规律。首先,开展了爆轰驱动含初始间隙双层钢飞片的简化建模及数值模拟,通过模拟与实验结果的对比,验证了简化建模的合理性;然后,对该模型的加载动力学过程进行了深入分析,给出了首次、二次加载的来源;最后,开展了不同间隙厚度对该动力学过程影响的模拟分析研究。自由面速度结果表明,随着间隙厚度由0.1 mm增加至1 mm以上,外层飞片自由面的首次起跳速度峰值先逐渐降低后基本保持恒定、二次起跳速度峰值由逐渐增加至基本不变。动力学分析结果表明,可将不同间隙大小的影响分为两个阶段,其分界判据是在爆轰加载后内层金属飞片是否能够在间隙部位发展为脱体层裂片:在间隙较小的情况下,内层飞片在间隙一侧无法发展为层裂片,在此阶段内,随着间隙厚度的增加,外层飞片的首次加载峰值压力降低、二次加载峰值压力增加;在间隙较大的情况下,内层飞片在间隙一侧可以形成厚度不变、速度稳定的层裂片,在此阶段内,随着间隙厚度的增加,外层飞片的首次加载与二次加载的峰值压力均基本不变,但首次与二次加载之间的时间间隔缩短。研究结果对爆轰驱动含间隙飞片的自由面速度曲线的解读具有指导意义,从而能够更好地认识工程实验中由间隙造成的一些非预期物理现象。Abstract: Clearance of certain thickness often exists between two stacked metal flyers. When a double-layer metal flyer with clearance is loaded by detonation, the closing of the clearance may affect the form and shock intensity of the first and second loading waves inside of the outer flyer, and then affects the free surface velocity of the outer flyer. In order to better grasp the motion characteristics under detonation loading, the effect of clearance on the dynamic process needs to be studied. Firstly, a detonation driven two-layer steel flyers model is presented, in which a clearance of certain thickness is assumed to exist between two steel flyers. In this model, the free surface of the outer flyer is loaded twice. By comparing the simulation results and experimental results of free surface velocity at different positions, it is confirmed that the simulation can correctly catch the dynamic process. Then, the sources of the first and second loading in the outer flyer are given by the analysis of the simulated dynamic process. The first loading wave in the outer flyer comes from the clearance closing collision, and the second loading wave mainly comes from the sustained high pressure loading of detonation products. Finally, the simulation with various clearance thicknesses is carried out, and the effect of clearance thickness change is summarized. The simulated results of free surface velocity show that with the increase of clearance thickness from 0.1 mm to more than 1 mm, the peak value of the first take-off free surface velocity first decreases and then remains unchanged, and the peak value of the second take-off free surface velocity first increases and then remains unchanged. The dynamic analysis shows that the size of the clearance thickness directly affects whether the inner steel flyer has enough time to develop into spallation on the clearance side after detonation loading. If the size of clearance is small, the inner flyer cannot develop into a spallation on clearance side, and the first loading wave formed in the outer flyer has a triangular like pulse. In this stage, with the increase of the clearance thickness, the first loading peak pressure decreases and the second loading peak pressure increases. If the size of clearance is large, the inner flyer can form a spallation with constant thickness and stable velocity on clearance side, and the first loading wave formed in the outer flyer is an approximate square wave. In this stage, with the increase of clearance thickness, the peak pressures of the first and second loading remain basically unchanged, but the time interval between the first and second loading decreases. The understanding has guiding significance for the interpretation of the free surface velocity measurement results in experiments, and some unexpected physical phenomena caused by clearance in practical problems could be better understood, too.
-
Key words:
- detonation driving /
- metal flyer /
- clearance /
- second loading
-
ρ0/(g·cm−3) pCJ/GPa DCJ/(km·s−1) A/GPa B/GPa R1 R2 ω E/(kJ·cm−3) 1.7 27.0 7.8 755.975 13.175 4.8 0.58 0.34 8.5 ρ0/(g·cm−3) c0/(km·s−1) S1 S2 S3 γ0 λ G0/GPa Y0/GPa Ymax/GPa Tm0/K 7.85 4.57 1.49 0 0 2.17 0.43 81.8 0.355 2.0 2380 表 3 45钢的VG损伤模型参数
Table 3. The VG parameters of steel 45
$ {\alpha }_{0} $ $ {\alpha }_{\mathrm{s}}/\mathrm{G}\mathrm{P}\mathrm{a} $ $ \eta $/(Pa·s) $ {D}_{\mathrm{c}\mathrm{u}\mathrm{t}} $ 1.0001 0.3 10 0.10 -
[1] 李涛, 刘明涛, 王晓燕, 等. 装配垫层与间隙对爆轰加载下金属飞片运动特征的影响 [J]. 高压物理学报, 2018, 32(4): 044202. DOI: 10.11858/gywlxb.20170576.LI T, LIU M T, WANG X Y, et al. Effects of explosive device with foam cushion and air clearance on kinetic characteristic of steel flyer under detonation loading [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 044202. DOI: 10.11858/gywlxb.20170576. [2] 贺年丰, 张绍龙, 洪仁楷, 等. 间隙对金属锡爆轰加载过程的影响 [J]. 爆炸与冲击, 2021, 41(1): 012101. DOI: 10.11883/bzycj-2020-0054.HE N F, ZHANG S L, HONG R K, et al. Effects of gap on the explosive loading process of tin [J]. Explosion and Shock Waves, 2021, 41(1): 012101. DOI: 10.11883/bzycj-2020-0054. [3] 李雪交, 马宏昊, 沈兆武. 铝合金与槽型界面钢板的爆炸焊接 [J]. 爆炸与冲击, 2016, 36(5): 640–647. DOI: 10.11883/1001-1455(2016)05-0640-08.LI X J, MA H H, SHEN Z W. Explosive welding of interface between aluminum alloy and steel plate with dovetail grooves [J]. Explosion and Shock Waves, 2016, 36(5): 640–647. DOI: 10.11883/1001-1455(2016)05-0640-08. [4] 何长江, 周海兵, 杭义洪. 爆轰驱动金属铝界面不稳定性的数值分析 [J]. 中国科学 G辑: 物理学 力学 天文学, 2010, 53(2): 195–198. DOI: 10.1007/s11433-009-0261-4.HE C J, ZHOU H B, HANG Y H. A numerical study on Rayleigh-Taylor instability of aluminum plates driven by detonation [J]. Science China Physics, Mechanics and Astronomy, 2010, 53(2): 195–198. DOI: 10.1007/s11433-009-0261-4. [5] 殷建伟, 潘昊, 吴子辉, 等. 爆轰驱动Cu界面的Richtmyer-Meshkov扰动增长稳定性 [J]. 物理学报, 2017, 66(20): 204701. DOI: 10.7498/aps.66.204701.YIN J W, PAN H, WU Z H, et al. Stability analysis of interfacial Richtmyer-Meshkov flow of explosion-driven copper interface [J]. Acta Physica Sinica, 2017, 66(20): 204701. DOI: 10.7498/aps.66.204701. [6] 刘军, 冯其京, 周海兵. 柱面内爆驱动金属界面不稳定性的数值模拟研究 [J]. 物理学报, 2014, 63(15): 155201. DOI: 10.7498/aps.63.155201.LIU J, FENG Q J, ZHOU H B. Simulation study of interface instability in metals driven by cylindrical implosion [J]. Acta Physica Sinica, 2014, 63(15): 155201. DOI: 10.7498/aps.63.155201. [7] 张维岩, 叶文华, 吴俊峰, 等. 激光间接驱动聚变内爆流体不稳定性研究 [J]. 中国科学: 物理学 力学 天文学, 2014, 44(1): 1–23. DOI: 10.1360/SSPMA2013-00039.ZHANG W Y, YE W H, WU J F, et al. Hydrodynamic instabilities of laser indirect-drive inertial-confinement-fusion implosion [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44(1): 1–23. DOI: 10.1360/SSPMA2013-00039. [8] 王涛, 汪兵, 林健宇, 等. 内爆加载下界面不稳定性和湍流混合数值模拟研究 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(10): 104704. DOI: 10.1360/SSPMA-2019-0420.WANG T, WANG B, LIN J Y, et al. Numerical investigations of interface instability and turbulent mixing driven by implosion [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(10): 104704. DOI: 10.1360/SSPMA-2019-0420. [9] 曾翔宇, 李晓杰, 曹景祥, 等. 材料强度对爆炸焊接结合界面的影响 [J]. 爆炸与冲击, 2019, 39(5): 137–143. DOI: 10.11883/bzycj-2018-0400.ZENG X Y, LI X J, CAO J X, et al. Interface characteristics of explosive welding for different strength plates [J]. Explosion and Shock Waves, 2019, 39(5): 137–143. DOI: 10.11883/bzycj-2018-0400. [10] 张登霞, 李国豪, 周之洪, 等. 材料强度在爆炸焊接界面波形成过程中的作用 [J]. 力学学报, 1984, 16(1): 73–80.ZHANG D X, LI G H, ZHOU Z H, et al. Effect of material strength on forming process of explosive welding interface wave [J]. Acta Mechanica Sinica, 1984, 16(1): 73–80. [11] 虞德水, 赵锋, 谭多望, 等. JOB-9003和JB-9014炸药平面爆轰驱动飞片的对比研究 [J]. 爆炸与冲击, 2006, 26(2): 140–144. DOI: 10.11883/1001-1455(2006)02-0140-05.YU D S, ZHAO F, TAN D W, et al. Experimental studies on detonation driving behaviorof JOB-9003 and JB-9014 slab explosives [J]. Explosion and Shock Waves, 2006, 26(2): 140–144. DOI: 10.11883/1001-1455(2006)02-0140-05. [12] WHIRLEY R G, ENGELMANN B E. DYNA2D: a nonlinear, explicit, two-dimensional finite element code for solid mechanics: user manual: UCRL-MA-110630 [R]. Washington: Lawrence Livermore National Laboratory, 1992. [13] 袁帅, 周显明, 李平. 液体炸药-惰性材料组合式平面波透镜数值模拟 [J]. 兵工学报, 2010, 31(S1): 159–161.YUAN S, ZHOU X M, LI P. Simulation of plane wave lens with the combinition of liquid explosive and inert material [J]. Acta Armamentarii, 2010, 31(S1): 159–161. [14] 韩勇, 魏智勇, 黄毅民, 等. 平面波透镜实验与数值模拟 [J]. 含能材料, 2007, 15(5): 471–473. DOI: 10.3969/j.issn.1006-9941.2007.05.008.HAN Y, WEI Z Y, HUANG Y M, et al. Experiment and numerical simulation of plane wave lens [J]. Chinese Journal of Energetic Materials, 2007, 15(5): 471–473. DOI: 10.3969/j.issn.1006-9941.2007.05.008. [15] 孙承纬. 炸药平面波透镜的有效药量 [C]//爆轰研究论文集, 第3卷. 绵阳: 中国工程物理研究院流体物理研究所, 1998: 307-316. [16] 林文洲, 林忠, 刘全. 非结构多边形网格滑移线开穴算法 [J]. 计算物理, 2017, 34(3): 273–282. DOI: 10.3969/j.issn.1001-246X.2017.03.004.LIN W Z, LI Z, LIU Q. An open void method of slide line on unstructured N-polygon grids [J]. Chinese Journal of Computational Physics, 2017, 34(3): 273–282. DOI: 10.3969/j.issn.1001-246X.2017.03.004. [17] JOHNSON JN. Dynamic fracture and spallation in ductile solids [J]. Journal of Applied Physics, 1981, 52(4): 2812–2825. DOI: 10.1063/1.329011. [18] 董海山, 周芬芬. 高能炸药及相关物性能[M]. 北京: 科学出版社, 1989. [19] STEINBERG D J. Equation of state and strength properties of selected materials: UCRL-MA-106439 [R]. Washington: Lawrence Livermore National Laboratory, 1996. [20] 张林, 张祖根, 秦晓云, 等. D6A、921和45钢的动态破坏与低压冲击特性 [J]. 高压物理学报, 2003, 17(4): 305–310. DOI: 10.11858/gywlxb.2003.04.011.ZHANG L, ZHANG Z G, QIN X Y, et al. Dynamic fracture and mechanical property of D6A, 921 and 45 steels under low shock pressure [J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 305–310. DOI: 10.11858/gywlxb.2003.04.011. [21] 胡昌明, 贺红亮, 胡时胜. 45号钢的动态力学性能研究 [J]. 爆炸与冲击, 2003, 23(2): 188–192.HU C M, HE H L, HU S S. A study on dynamic mechancial behaviors of 45 steel [J]. Explosion and Shock Waves, 2003, 23(2): 188–192.