[1] |
贾文林. 煤基喷气燃料和RP-3航空煤油及其混合燃料点火特性研究 [D]. 太原: 中北大学, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000890.JIA W L. Study on ignition characteristics of coal-based jet fuel and RP-3 jet fuel and their blends [D]. Taiyuan: North University of China, 2022. DOI: 10.27470/d.cnki.ghbgc.2022.000890.
|
[2] |
沈晓波, 鲁长波, 李斌, 等. 液体燃料云雾爆轰参数实验 [J]. 爆炸与冲击, 2012, 32(1): 108–112. DOI: 10.11883/1001-1455(2012)01-0108-05.SHEN X B, LU C B, LI B, et al. An experimental study of detonation parameters of liquid fuel drops cloud [J]. Explosion and Shock Waves, 2012, 32(1): 108–112. DOI: 10.11883/1001-1455(2012)01-0108-05.
|
[3] |
NIU Y H, SHI B M, JIANG B Y. Experimental study of overpressure evolution laws and flame propagation characteristics after methane explosion in transversal pipe networks [J]. Applied Thermal Engineering, 2019, 154: 18–23. DOI: 10.1016/j.applthermaleng.2019.03.059.
|
[4] |
SU B, LUO Z M, WANG T, et al. Experimental and numerical evaluations on characteristics of vented methane explosion [J]. Journal of Central South University, 2020, 27(8): 2382–2393. DOI: 10.1007/s11771-020-4456-1.
|
[5] |
LI D, ZHANG Q, MA Q J, et al. Comparison of explosion characteristics between hydrogen/air and methane/air at the stoichiometric concentrations [J]. International Journal of Hydrogen Energy, 2015, 40(28): 8761–8768. DOI: 10.1016/j.ijhydene.2015.05.038.
|
[6] |
LI G Q, ZHENG K, WANG S M, et al. Comparative study on explosion characteristics of hydrogen and gasoline vapor in a semi-confined pipe based on large eddy simulation [J]. Fuel, 2022, 328: 125334. DOI: 10.1016/j.fuel.2022.125334.
|
[7] |
HUANG D, LI W. Heat transfer deterioration of aviation kerosene flowing in mini tubes at supercritical pressures [J]. International Journal of Heat and Mass Transfer, 2017, 111: 266–278. DOI: 10.1016/j.ijheatmasstransfer.2017.03.117.
|
[8] |
高旭锋, 代萌, 郭士刚, 等. 喷气燃料热氧化安定性测定方法及其影响因素的研究进展 [J]. 石油化工, 2022, 51(7): 857–862. DOI: 10.3969/j.issn.1000-8144.2022.07.019.GAO X F, DAI M, GUO S G, et al. Research progress on determination methods of thermal oxidation stability of jet fuel and its influencing factors [J]. Petrochemical Technology, 2022, 51(7): 857–862. DOI: 10.3969/j.issn.1000-8144.2022.07.019.
|
[9] |
李俊, 鲁长波, 安高军, 等. 高闪点喷气燃料最小点火能试验研究 [J]. 消防科学与技术, 2016, 35(11): 1521–1524. DOI: 10.3969/j.issn.1009-0029.2016.11.006.LI J, LU C B, AN G J, et al. Experimental study on the minimum ignition energy of high flashpoint jet fuel [J]. Fire Science and Technology, 2016, 35(11): 1521–1524. DOI: 10.3969/j.issn.1009-0029.2016.11.006.
|
[10] |
ZHAO Z F, CUI H S. Numerical investigation on combustion processes of an aircraft piston engine fueled with aviation kerosene and gasoline [J]. Energy, 2022, 239: 122264. DOI: 10.1016/j.energy.2021.122264.
|
[11] |
LI M H, ZHOU L, SHU Z Z, et al. Gas-liquid hydrodynamics and vortex motion of flame spread over jet fuel in longitudinal air stream [J]. Experimental Thermal and Fluid Science, 2022, 134: 110601. DOI: 10.1016/j.expthermflusci.2022.110601.
|
[12] |
LEI Z, LU C B, AN G J, et al. Comparative study on combustion and explosion characteristics of high flash point jet fuel [J]. Procedia Engineering, 2014, 84: 377–383. DOI: 10.1016/j.proeng.2014.10.447.
|
[13] |
李俊, 鲁长波, 安高军, 等. 抑爆高闪点喷气燃料的抑爆特性 [J]. 高压物理学报, 2017, 31(3): 328–334. DOI: 10.11858/gywlxb.2017.03.016.LI J, LU C B, AN G J, et al. Explosion suppression characteristics of explosion-suppressive high flash-point jet fuel [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 328–334. DOI: 10.11858/gywlxb.2017.03.016.
|
[14] |
YANG Z Y, ZENG P, WANG B Y, et al. Ignition characteristics of an alternative kerosene from direct coal liquefaction and its blends with conventional RP-3 jet fuel [J]. Fuel, 2021, 291: 120258. DOI: 10.1016/j.fuel.2021.120258.
|
[15] |
RAZA M, MAO Y B, YU L, et al. Insights into the effects of mechanism reduction on the performance of n-decane and its ability to act as a single-component surrogate for jet fuels [J]. Energy & Fuels, 2019, 33(8): 7778–7790. DOI: 10.1021/acs.energyfuels.9b00971.
|
[16] |
ZHAO L, YANG T, KAISER R I, et al. Combined experimental and computational study on the unimolecular decomposition of JP-8 jet fuel surrogates. Ⅱ: n-dodecane (n-C12H26) [J]. The Journal of Physical Chemistry A, 2017, 121(6): 1281–1297. DOI: 10.1021/acs.jpca.6b11817.
|
[17] |
霍伟业, 林宇震, 张弛, 等. 正癸烷作为航空煤油雾化过程代理燃料的研究 [J]. 航空动力学报, 2016, 31(1): 188–195. DOI: 10.13224/j.cnki.jasp.2016.01.024.HUO W Y, LIN Y Z, ZHANG C, et al. Research on n-decane as surrogate fuel of aviation kerosene in atomization process [J]. Journal of Aerospace Power, 2016, 31(1): 188–195. DOI: 10.13224/j.cnki.jasp.2016.01.024.
|
[18] |
LI Y, WANG Y W, FAN W P, et al. Experiment and simulation of JP-5 vapor/air mixture deflagration in enclosed space [J]. Process Safety and Environmental Protection, 2021, 156: 545–558. DOI: 10.1016/j.psep.2021.10.048.
|
[19] |
FAKANDU B M, MBAM C J, ANDREWS G E, et al. Gas explosion venting: external explosion turbulent flame speeds that control the overpressure [J]. Chemical Engineering Transactions, 2016, 53: 1–6. DOI: 10.3303/CET1653001.
|
[20] |
KINDRACKI J, KOBIERA A, RARATA G, et al. Influence of ignition position and obstacles on explosion development in methane-air mixture in closed vessels [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6): 551–561. DOI: 10.1016/j.jlp.2007.05.010.
|