UHPFRC圆盘动态劈裂试验及基于μXCT图像的破坏机理研究

姚勇 杨贞军 张昕 庞苗 李雅祺 喻渴来

姚勇, 杨贞军, 张昕, 庞苗, 李雅祺, 喻渴来. UHPFRC圆盘动态劈裂试验及基于μXCT图像的破坏机理研究[J]. 爆炸与冲击, 2023, 43(5): 053103. doi: 10.11883/bzycj-2022-0243
引用本文: 姚勇, 杨贞军, 张昕, 庞苗, 李雅祺, 喻渴来. UHPFRC圆盘动态劈裂试验及基于μXCT图像的破坏机理研究[J]. 爆炸与冲击, 2023, 43(5): 053103. doi: 10.11883/bzycj-2022-0243
YAO Yong, YANG Zhenjun, ZHANG Xin, PANG Miao, LI Yaqi, YU Kelai. Dynamic split tests of UHPFRC discs and failure mechanism analysis based on μXCT images[J]. Explosion And Shock Waves, 2023, 43(5): 053103. doi: 10.11883/bzycj-2022-0243
Citation: YAO Yong, YANG Zhenjun, ZHANG Xin, PANG Miao, LI Yaqi, YU Kelai. Dynamic split tests of UHPFRC discs and failure mechanism analysis based on μXCT images[J]. Explosion And Shock Waves, 2023, 43(5): 053103. doi: 10.11883/bzycj-2022-0243

UHPFRC圆盘动态劈裂试验及基于μXCT图像的破坏机理研究

doi: 10.11883/bzycj-2022-0243
基金项目: 国家自然科学基金(52173300,51974202);湖北省重点研发计划(2020BAB052)
详细信息
    作者简介:

    姚 勇(1992- ),男,博士研究生,yyong102@zju.edu.cn

    通讯作者:

    杨贞军(1974- ),男,博士,教授,zhjyang@whu.edu.cn

  • 中图分类号: O347.3

Dynamic split tests of UHPFRC discs and failure mechanism analysis based on μXCT images

  • 摘要: 采用分离式霍普金森压杆对钢纤维体积分数为0~3%的超高性能纤维增强混凝土(ultra high performance fibre reinforced concrete, UHPFRC)圆盘试件进行应变率为1.72~7.42 s−1的动态劈裂试验,使用高速摄像机结合数字图像相关(digital image correlation, DIC)法获得试件表面裂缝扩展全过程图像和应变演化过程,并对冲击前后试件进行微观X射线计算断层扫描(micro X-ray computed tomography, μXCT),获得分辨率为56.7 μm的三维内部图像,并进行统计和破坏机理分析。结果表明:(1)相比无纤维试件,掺入1%~3%的钢纤维,静、动劈裂强度分别提高84%~131%和47%~87%,动劈裂强度增强因子(即动静强度比值)为1.07~1.72;(2) DIC应变图像分析表明,无纤维试件裂缝集中、破坏快、能耗低;含纤维试件裂缝弥散程度大、能耗高、延性好,且随着纤维含量的提高而提升;(3) μXCT图像分析表明,试件中钢纤维体积分数为1.04%~2.47%,与设计基本一致,孔洞体积分数为0.98%~1.71%,纤维掺量的提高,降低了孔洞数量和总体积分数,但孔洞的平均体积和平均等效直径增大;裂缝桥连纤维数量的增加,减小了主裂缝的体积和平均宽度,提高了裂缝面的粗糙度和相对表面积,从而提高了试件的强度、能耗、韧性和延性。
  • 图  1  劈裂试件横截面

    Figure  1.  The cross section of a disc specimen

    图  2  静力压缩试验

    Figure  2.  Quasi-static compression test

    图  3  静力劈裂试验

    Figure  3.  Quasi-static split test

    图  4  分离式霍普金森杆劈裂试验装置

    Figure  4.  SHPB splitting test setup

    图  5  弹性杆中的应变

    Figure  5.  Strain in elastic bars

    图  6  微观X射线计算断层扫描仪

    Figure  6.  The micro X-ray computed tomography scanner used in tests

    图  7  静力劈裂后的试件

    Figure  7.  Specimens after quasi-static splitting

    图  8  动态劈裂后的试件(冲击应变率为1.72~7.42 s−1

    Figure  8.  Specimens after dynamic splitting at the strain rates of 1.72-7.42 s−1

    图  9  由高速摄影和数字图像相关技术结合获得的试件DT0-3开裂过程和竖向拉应变场演化

    Figure  9.  Crack and vertical tensile strain field evolutionsin specimen DT0-3 by combining the high-speed videoand digital image correlation techniques

    图  10  由高速摄影和数字图像相关技术结合获得的试件DT1-3开裂过程和竖向拉应变场演化

    Figure  10.  Crack and vertical tensile strain field evolutionsin specimen DT1-3 by combining the high-speed videoand digital image correlation techniques

    图  11  DT0~DT3组试件劈裂应力-时间曲线

    Figure  11.  Splitting stress-time curves of specimen groups DT0-DT3

    图  12  试件劈裂强度与钢纤维掺量的关系

    Figure  12.  Splitting strength of specimens varied with steel fibre content

    图  13  钢纤维对试件劈裂强度的增强效应

    Figure  13.  Enhancement effect of steel fiber on splitting strength of specimens

    图  14  UHPFRC的动态劈裂平均能耗

    Figure  14.  Average energy consumption of UHPFRC in dynamic splitting

    图  15  经裁剪、降噪和过滤处理后的μXCT图像

    Figure  15.  The μXCT images after cropping, filtering, and segmentation

    图  16  纤维和孔洞灰度阈值的初步确定

    Figure  16.  Initial determination of grey thresholds for pores and fibres

    图  17  孔洞体积分数对灰度阈值的灵敏度分析

    Figure  17.  Sensitivity analysis of pore volume fraction to the grey threshold

    图  18  孔洞等效直径的频数分布

    Figure  18.  Frequency distribution of pore equivalent diameters

    图  19  试件DT0-3~DT3-3分割后孔洞3D图像

    Figure  19.  Segmented 3D images of pores for specimens DT0-3-DT3-3

    图  20  试件DT1-3~DT3-3分割后的纤维

    Figure  20.  Segmented 3D images and skeleton of fibres for specimens DT1-3-DT3-3

    图  21  试件DT1-3在xy平面裂缝宽度(切片 400)

    Figure  21.  Crack width on the xy plane of the specimen DT1-3 (slice 400)

    图  22  纤维从基体中拔出

    Figure  22.  Fibre pullout from matrix

    图  23  纤维拔出后弯曲变形

    Figure  23.  Fibre bending after pullout

    图  24  纤维断裂

    Figure  24.  Fibre breakage

    图  25  试件DT1-3主裂缝及跨过裂缝的纤维

    Figure  25.  The main crack and crack-crossing fibres of specimen DT1-3

    图  26  试件DT2-3主裂缝及跨过裂缝的纤维

    Figure  26.  The main crack and crack-crossing fibres of specimen DT2-3

    图  27  试件DT3-3主裂缝及跨过裂缝的纤维

    Figure  27.  The main crack and crack-crossing fibres of specimen DT3-3

    表  1  各组UHPFRC试件的配合比

    Table  1.   Mixing proportions of UHPFRC specimens for each test group

    试件钢纤维体积分数/%配合比/(kg·m−3)
    静力压缩准静态劈裂动态劈裂水泥硅灰细砂石英粉减水剂钢纤维
    C0ST0DT00105426326358031624 0
    C1ST1DT11105426326358031624 78
    C2ST2DT22105426326358031624156
    C3ST3DT33105426326358031624234
    下载: 导出CSV

    表  2  静力压缩试验结果

    Table  2.   Results of static compression tests

    试件钢纤维体积分数/%峰值应变/%峰值应力/MPa弹性模量/GPa
    SC000.325±0.039106.82±5.0339.68±1.88
    SC110.327±0.030118.82±4.1840.31±1.34
    SC220.351±0.064138.43±6.5144.12±1.19
    SC330.359±0.016155.12±0.4045.14±1.26
    下载: 导出CSV

    表  3  静力劈裂试验结果

    Table  3.   Results of static split tests

    试件钢纤维体积分数/%劈裂强度/MPa试件钢纤维体积分数/%劈裂强度/MPa
    ST0011.41±0.46ST2223.47±1.04
    ST1120.98±1.23ST3326.37±0.22
    下载: 导出CSV

    表  4  动态劈裂试验结果

    Table  4.   Results of dynamic split tests

    试件$ \dot{\sigma } $/(GPa·s−1)$ \dot{\varepsilon } $/s−1T/μs$ {\sigma }_{\mathrm{T}} $/MPa$ {\sigma }_{\mathrm{T},\mathrm{a}} $/MPaδt
    DT0-1 66.801.7222815.2316.62 ± 2.121.33
    DT0-2 89.402.3016815.021.32
    DT0-3118.133.0416619.611.72
    DT1-1258.376.41 9424.2924.41± 0.111.16
    DT1-2191.704.7612824.541.17
    DT1-3217.205.3911224.331.16
    DT2-1186.674.2313425.0125.65± 0.791.07
    DT2-2233.085.2810825.171.07
    DT2-3196.764.4613626.761.14
    DT3-1177.313.9317030.1431.06 ±0.831.14
    DT3-2334.937.42 9632.151.22
    DT3-3166.043.6818630.881.17
    下载: 导出CSV

    表  5  试件DT0-3~DT3-3孔洞分布统计

    Table  5.   Statistics of pore distribution of specimens DT0-3-DT3-3

    试件孔洞体积
    分数/%
    孔洞数目孔洞平均
    体积/mm3
    平均等效
    直径/mm
    孔洞数目(占比)
    de=56.7~400 μmde=>400~800 μmde=>800~1600 μmde>1600 μm
    DT0-31.71386710.0530.46627089
    (70.05%)
    10012
    (25.89%)
    1439
    (3.72%)
    131
    (0.34%)
    DT1-31.58213840.0890.55412859
    (60.13%)
    7389
    (34.55%)
    983
    (4.60%)
    153
    (0.72%)
    DT2-31.20155080.0930.5638847
    (57.05%)
    5736
    (36.99%)
    810
    (5.22%)
    115
    (0.74%)
    DT3-30.98101580.1010.5796404
    (63.04%)
    3134
    (30.85%)
    548
    (5.39%)
    72
    (0.71%)
    下载: 导出CSV

    表  6  裂缝及桥连纤维的统计分析

    Table  6.   Statistical analysis of cracks and bridged fibers

    试件桥连纤维
    根数
    裂缝体积/
    mm3
    裂缝表面积/
    mm2
    相对表面积/
    mm−1
    DT1-3 3287118.9710963.401.54
    DT2-3 7473234.73 6319.611.95
    DT3-31 4683081.81 6545.252.12
    下载: 导出CSV
  • [1] RICHARD P, CHEYREZY M. Composition of reactive powder concretes [J]. Cement and Concrete Research, 1995, 25(7): 1501–1511. DOI: 10.1016/0008-8846(95)00144-2.
    [2] 徐海宾, 邓宗才, 陈春生, 等. 超高性能纤维混凝土梁抗剪性能试验研究 [J]. 土木工程学报, 2014, 47(12): 91–97. DOI: 10.15951/j.tmgcxb.2014.12.011.

    XU H B, DENG Z C, CHEN C S, et al. Experimental study on shear strength of ultra-high performance fiber reinforced concrete beams [J]. China Civil Engineering Journal, 2014, 47(12): 91–97. DOI: 10.15951/j.tmgcxb.2014.12.011.
    [3] MAGUREANU C, SOSA I, NEGRUTIU C, et al. Mechanical properties and durability of ultra-high-performance concrete [J]. Materials Journal, 2012, 109(2): 177–184. DOI: 10.14359/51683704.
    [4] YANG S L, MILLARD S G, SOUTSOS M N, et al. Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC) [J]. Construction and Building Materials, 2009, 23(6): 2291–2298. DOI: 10.1016/j.conbuildmat.2008.11.012.
    [5] MILLARD S G, MOLYNEAUX T C K, BARNETT S J, et al. Dynamic enhancement of blast-resistant ultra high performance fibre-reinforced concrete under flexural and shear loading [J]. International Journal of Impact Engineering, 2010, 37(4): 405–413. DOI: 10.1016/j.ijimpeng.2009.09.004.
    [6] HABEL K, VIVIANI M, DENARIÉ E, et al. Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC) [J]. Cement and Concrete Research, 2006, 36(7): 1362–1370. DOI: 10.1016/j.cemconres.2006.03.009.
    [7] 葛涛, 潘越峰, 谭可可, 等. 活性粉末混凝土抗冲击性能研究 [J]. 岩石力学与工程学报, 2007, 26(S1): 3553–3557. DOI: 10.3321/j.issn:1000-6915.2007.z1.148.

    GE T, PAN Y F, TAN K K, et al. Study on resistance of reactive powder concrete to impact [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3553–3557. DOI: 10.3321/j.issn:1000-6915.2007.z1.148.
    [8] 刘金涛. 基于纳米材料的活性粉末混凝土及其基本力学性能研究 [D]. 杭州: 浙江大学, 2016: 106–133.

    LIU J T. The mechanical properties of nanomaterials reinforced reactive powder concrete [D]. Hangzhou: Zhejiang University, 2016: 106–133.
    [9] 赖建中, 孙伟, 戎志丹. 活性粉末混凝土在多次冲击荷载下的力学行为 [J]. 爆炸与冲击, 2008, 28(6): 532–538. DOI: 10.11883/1001-1455(2008)06-0532-07.

    LAI J Z, SUN W, RONG Z D. Dynamic mechanical behaviour of reactive powder concrete subjected to repeated impact [J]. Explosion and Shock Waves, 2008, 28(6): 532–538. DOI: 10.11883/1001-1455(2008)06-0532-07.
    [10] 杜修力, 窦国钦, 李亮, 等. 纤维高强混凝土的动态力学性能试验研究 [J]. 工程力学, 2011, 28(4): 138–144.

    DU X L, DOU G Q, LI L, et al. Experimental study on dynamic mechanical properties of fiber reinforced high strength concrete [J]. Engineering Mechanics, 2011, 28(4): 138–144.
    [11] 谢磊, 李庆华, 徐世烺. 冲击荷载下免蒸养活性粉末混凝土分形特征研究 [J]. 工程力学, 2021, 38(3): 169–180. DOI: 10.6052/j.issn.1000-4750.2020.05.0298.

    XIE L, LI Q H, XU S L. Experimental study on fractal characteristics of steam free reactive powder concrete under impact load [J]. Engineering Mechanics, 2021, 38(3): 169–180. DOI: 10.6052/j.issn.1000-4750.2020.05.0298.
    [12] 焦楚杰, 孙伟, 高培正. 钢纤维超高强混凝土动态力学性能 [J]. 工程力学, 2006, 23(8): 86–89, 85. DOI: 10.3969/j.issn.1000-4750.2006.08.016.

    JIAO C J, SUN W, GAO P Z. Dynamic mechanical properties of steel-fiber reinforced ultra high strength concrete [J]. Engineering Mechanics, 2006, 23(8): 86–89, 85. DOI: 10.3969/j.issn.1000-4750.2006.08.016.
    [13] WANG Z L, LIU Y S, SHEN R F. Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression [J]. Construction and Building Materials, 2008, 22(5): 811–819. DOI: 10.1016/j.conbuildmat.2007.01.005.
    [14] 任兴涛, 周听清, 钟方平, 等. 钢纤维活性粉末混凝土的动态力学性能 [J]. 爆炸与冲击, 2011, 31(5): 540–547. DOI: 10.11883/1001-1455(2011)05-0540-08.

    REN X T, ZHOU T Q, ZHONG F P, et al. Dynamic mechanical behavior of steel-fiber reactive powder concrete [J]. Explosion and Shock Waves, 2011, 31(5): 540–547. DOI: 10.11883/1001-1455(2011)05-0540-08.
    [15] 卢芳云, 陈荣, 林玉亮, 等. 霍普金森杆实验技术 [M]. 北京: 科学出版社, 2013: 151–167.

    LU F Y, CHEN R, LIN Y L, et al. Hopkinson bar techniques [M]. Beijing: Science Press, 2013: 151–167.
    [16] 焦楚杰, 蒋国平, 高乐. 钢纤维混凝土动态劈裂实验研究 [J]. 兵工学报, 2010, 31(4): 469–472.

    JIAO C J, JIANG G P, GAO L. Experimental research on the dynamic split properties of steel fiber reinforced concrete [J]. Acta Armamentarii, 2010, 31(4): 469–472.
    [17] 巫绪涛, 代仁强, 陈德兴, 等. 钢纤维混凝土动态劈裂试验的能量耗散分析 [J]. 应用力学学报, 2009, 26(1): 151–154.

    WU X T, DAI R Q, CHEN D X, et al. Energy dissipation analysis on dynamic splitting-tensile test of steel fiber reinforced concrete [J]. Chinese Journal of Applied Mechanics, 2009, 26(1): 151–154.
    [18] KHOSRAVANI M R, SILANI M, WEINBERG K. Fracture studies of ultra-high performance concrete using dynamic Brazilian tests [J]. Theoretical and Applied Fracture Mechanics, 2018, 93: 302–310. DOI: 10.1016/j.tafmec.2017.10.001.
    [19] PARK J K, KIM S W, KIM D J. Matrix-strength-dependent strain-rate sensitivity of strain-hardening fiber-reinforced cementitious composites under tensile impact [J]. Composite Structures, 2017, 162: 313–324. DOI: 10.1016/j.compstruct.2016.12.022.
    [20] CADONI E, FORNI D. Experimental analysis of the UHPFRCs behavior under tension at high stress rate [J]. The European Physical Journal Special Topics, 2016, 225(2): 253–264. DOI: 10.1140/epjst/e2016-02639-2.
    [21] 黄政宇, 秦联伟, 肖岩, 等. 级配钢纤维活性粉末混凝土的动态拉伸性能的试验研究 [J]. 铁道科学与工程学报, 2007, 4(4): 34–40. DOI: 10.3969/j.issn.1672-7029.2007.04.007.

    HUANG Z Y, QIN L W, XIAO Y, et al. Experimental investigation on the dynamic tensile behavior of graded steel-fiber RPC [J]. Journal of Railway Science and Engineering, 2007, 4(4): 34–40. DOI: 10.3969/j.issn.1672-7029.2007.04.007.
    [22] SU Y, LI J, WU C Q, et al. Effects of steel fibres on dynamic strength of UHPC [J]. Construction and Building Materials, 2016, 114: 708–718. DOI: 10.1016/j.conbuildmat.2016.04.007.
    [23] TRAN N T, KIM D J. Synergistic response of blending fibers in ultra-high-performance concrete under high rate tensile loads [J]. Cement and Concrete Composites, 2017, 78: 132–145. DOI: 10.1016/j.cemconcomp.2017.01.008.
    [24] TRAN N T, TRAN T K, KIM D J. High rate response of ultra-high-performance fiber-reinforced concretes under direct tension [J]. Cement and Concrete Research, 2015, 69: 72–87. DOI: 10.1016/j.cemconres.2014.12.008.
    [25] PYO S, EL-TAWIL S, NAAMAN A E. Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates [J]. Cement and Concrete Research, 2016, 88: 144–156. DOI: 10.1016/j.cemconres.2016.07.003.
    [26] 苗艳春, 张玉, SELYUTINA N, 等. 基于X-CT的高温后再生保温混凝土损伤分析 [J]. 复合材料学报, 2022, 39(6): 2829–2843. DOI: 10.13801/j.cnki.fhclxb.20210716.007.

    MIAO Y C, ZHANG Y, SELYUTINA N, et al. Damage analysis of meso-scale recycled aggregate thermal insulation concrete based on X-CT after high temperature [J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2829–2843. DOI: 10.13801/j.cnki.fhclxb.20210716.007.
    [27] 覃茜, 徐千军. 基于CT图像的混凝土初始缺陷分布规律研究 [J]. 水利学报, 2016, 47(7): 959–966. DOI: 10.13243/j.cnki.slxb.20150935.

    QIN X, XU Q J. Statistics of the initial defects within concrete based on CT image [J]. Journal of Hydraulic Engineering, 2016, 47(7): 959–966. DOI: 10.13243/j.cnki.slxb.20150935.
    [28] NITKA M, TEJCHMAN J. A three-dimensional meso-scale approach to concrete fracture based on combined DEM with X-ray μCT images [J]. Cement and Concrete Research, 2018, 107: 11–29. DOI: 10.1016/j.cemconres.2018.02.006.
    [29] SUURONEN J P, KALLONEN A, EIK M, et al. Analysis of short fibres orientation in steel fibre-reinforced concrete (SFRC) by X-ray tomography [J]. Journal of Materials Science, 2013, 48(3): 1358–1367. DOI: 10.1007/s10853-012-6882-4.
    [30] BARNETT S J, LATASTE J F, PARRY T, et al. Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength [J]. Materials and Structures, 2010, 43(7): 1009–1023. DOI: 10.1617/s11527-009-9562-3.
    [31] YANG Z J, QSYMAH A, PENG Y Z, et al. 4D characterisation of damage and fracture mechanisms of ultra high performance fibre reinforced concrete by in-situ micro X-Ray computed tomography tests [J]. Cement and Concrete Composites, 2020, 106: 103473. DOI: 10.1016/j.cemconcomp.2019.103473.
    [32] ZHANG X, YANG Z J, PANG M, et al. Ex-situ micro X-ray computed tomography tests and image-based simulation of UHPFRC beams under bending [J]. Cement and Concrete Composites, 2021, 123: 104216. DOI: 10.1016/j.cemconcomp.2021.104216.
    [33] American Society for Testing and Materials (ASTM). Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression: ASTM C469/C469M—2010 [S]. Washington: ASTM, 2010.
    [34] 付应乾, 俞鑫炉, 董新龙, 等. 混凝土材料拉伸强度的应变率强化效应实验研究 [J]. 兵工学报, 2020, 41(1): 143–151. DOI: 10.3969/j.issn.1000-1093.2020.01.017.

    FU Y Q, YU X L, DONG X L, et al. An experimental investigation on the strain rate-dependent tensile strength of plain concretes [J]. Acta Armamentarii, 2020, 41(1): 143–151. DOI: 10.3969/j.issn.1000-1093.2020.01.017.
    [35] 赵昕. 超高韧性水泥基复合材料动态力学性能试验与理论研究 [D]. 杭州: 浙江大学, 2018: 84–107. DOI: 10.27461/d.cnki.gzjdx.2018.000077.

    ZHAO X. Experimental and theoretical study on the dynamic properties of ultra high toughness cementitious composites [D]. Hangzhou: Zhejiang University, 2018: 84–107. DOI: 10.27461/d.cnki.gzjdx.2018.000077.
    [36] 巫绪涛, 胡时胜, 陈德兴, 等. 钢纤维高强混凝土冲击压缩的试验研究 [J]. 爆炸与冲击, 2005, 25(2): 125–131. DOI: 10.11883/1001-1455(2005)02-0125-07.

    WU X T, HU S S, CHEN D X, et al. Impact compression experiment of steel fiber reinforced high strength concrete [J]. Explosion and Shock Waves, 2005, 25(2): 125–131. DOI: 10.11883/1001-1455(2005)02-0125-07.
    [37] 李庆华, 赵昕, 徐世烺. 纳米二氧化硅改性超高韧性水泥基复合材料冲击压缩试验研究 [J]. 工程力学, 2017, 34(2): 85–93. DOI: 10.6052/j.issn.1000-4750.2015.06.0477.

    LI Q H, ZHAO X, XU S L. Impact compression properties of nano-SiO2 modified ultra high toughness cementitious composites using a split Hopkinson pressure bar [J]. Engineering Mechanics, 2017, 34(2): 85–93. DOI: 10.6052/j.issn.1000-4750.2015.06.0477.
    [38] 宋力, 胡时胜. SHPB数据处理中的二波法与三波法 [J]. 爆炸与冲击, 2005, 25(4): 368–373. DOI: 10.11883/1001-1455(2005)04-0368-06.

    SONG L, HU S S. Two-wave and three-wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368–373. DOI: 10.11883/1001-1455(2005)04-0368-06.
    [39] TEDESCO J W, ROSS C A, KUENNEN S T. Experimental and numerical analysis of high strain rate splitting-tensile tests [J]. Materials Journal, 1993, 90(2): 162–169. DOI: 10.14359/4013.
    [40] CHEN X D, WU S X, ZHOU J K. Experimental study on dynamic tensile strength of cement mortar using split Hopkinson pressure bar technique [J]. Journal of Materials in Civil Engineering, 2014, 26(6): 04014005. DOI: 10.1061/(ASCE)MT.1943-5533.0000926.
    [41] PETERS W H, RANSON W F. Digital imaging techniques in experimental stress analysis [J]. Optical Engineering, 1982, 21(3): 213427. DOI: 10.1117/12.7972925.
    [42] 方志, 周传波. 活性粉末混凝土动静弹性模量试验研究 [J]. 铁道学报, 2018, 40(9): 128–134. DOI: 10.3969/j.issn.1001-8360.2018.09.018.

    FANG Z, ZHOU C B. Experimental study on the elastic modulus of reactive powder concrete [J]. Journal of the China Railway Society, 2018, 40(9): 128–134. DOI: 10.3969/j.issn.1001-8360.2018.09.018.
    [43] QIN C, ZHANG C H. Numerical study of dynamic behavior of concrete by meso-scale particle element modeling [J]. International Journal of Impact Engineering, 2011, 38(12): 1011–1021. DOI: 10.1016/j.ijimpeng.2011.07.004.
    [44] QSYMAH A, SHARMA R, YANG Z, et al. Micro X-ray computed tomography image-based two-scale homogenisation of ultra high performance fibre reinforced concrete [J]. Construction and Building Materials, 2017, 130: 230–240. DOI: 10.1016/j.conbuildmat.2016.09.020.
    [45] YANG J, CHEN B C, NUTI C. Influence of steel fiber on compressive properties of ultra-high performance fiber-reinforced concrete [J]. Construction and Building Materials, 2021, 302: 124104. DOI: 10.1016/j.conbuildmat.2021.124104.
    [46] ZHONG C L, LIU M, ZHANG Y L, et al. Study on mechanical properties of hybrid polypropylene-steel fiber RPC and computational method of fiber content [J]. Materials, 2020, 13(10): 2243. DOI: 10.3390/ma13102243.
  • 加载中
图(27) / 表(6)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  78
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-12-06
  • 网络出版日期:  2023-04-18
  • 刊出日期:  2023-05-05

目录

    /

    返回文章
    返回