循环冲击载荷作用下页岩动力学响应及能量耗散特征

王宇 翟成 唐伟 石克龙

王宇, 翟成, 唐伟, 石克龙. 循环冲击载荷作用下页岩动力学响应及能量耗散特征[J]. 爆炸与冲击, 2023, 43(6): 063102. doi: 10.11883/bzycj-2022-0248
引用本文: 王宇, 翟成, 唐伟, 石克龙. 循环冲击载荷作用下页岩动力学响应及能量耗散特征[J]. 爆炸与冲击, 2023, 43(6): 063102. doi: 10.11883/bzycj-2022-0248
WANG Yu, ZHAI Cheng, TANG Wei, SHI Kelong. Dynamic response and energy dissipating characteristics of shale under cyclic impact loadings[J]. Explosion And Shock Waves, 2023, 43(6): 063102. doi: 10.11883/bzycj-2022-0248
Citation: WANG Yu, ZHAI Cheng, TANG Wei, SHI Kelong. Dynamic response and energy dissipating characteristics of shale under cyclic impact loadings[J]. Explosion And Shock Waves, 2023, 43(6): 063102. doi: 10.11883/bzycj-2022-0248

循环冲击载荷作用下页岩动力学响应及能量耗散特征

doi: 10.11883/bzycj-2022-0248
基金项目: 国家重点研发计划(2020YFA0711800)
详细信息
    作者简介:

    王 宇(1999- ),男,博士研究生,tb21120024b1@cumt.edu.cn

    通讯作者:

    翟 成(1978- ),男,博士,教授,greatzc@126.com

  • 中图分类号: O341

Dynamic response and energy dissipating characteristics of shale under cyclic impact loadings

  • 摘要: 采用$\varnothing $50 mm分离式霍普金森杆(split Hopkinson pressure bar,SHPB)实验系统开展页岩循环冲击实验,研究不同循环冲击载荷作用下页岩动力学响应及损伤演化特征,同时揭示了控制入射总能量不变条件下,不同气压梯度循环冲击页岩能量演化规律。随着冲击气压升高,试样破裂所需的冲击次数呈线性减少,峰值应力随循环冲击次数的增加先升高后降低,极限应变先减小后增大,试样在循环冲击下表现出先压密后损伤的力学机制。基于Weibull分布的统计损伤模型表明,升高循环冲击气压,试样损伤破坏形式由缓慢劣化逐渐转变为骤然破坏。入射总能量恒定的情况下,通过控制循环入射能量梯度能够产生不同的损伤效果,降压冲击和升压冲击下的能量吸收比均大于恒压冲击下的,且气压梯度的绝对值与能量吸收比呈现正相关性。
  • 图  1  取样位置及试样制备

    Figure  1.  Sampling location and specimen preparation

    图  2  围压SHPB实验系统

    Figure  2.  SHPB experimental system with confining pressure

    图  3  不同冲击气压页岩破坏形态

    Figure  3.  Failure modes of shale under different impact air pressures

    图  4  冲击气压-循环冲击次数统计图

    Figure  4.  Relationship between impact pressure and critical cycle impact times

    图  5  不同冲击气压循环冲击页岩应力-应变曲线

    Figure  5.  Variation of stress-strain curves of shale with times of cyclic impact under different impact air pressures

    图  6  一次冲击破坏试样应力-应变曲线及应变损伤曲线

    Figure  6.  Stress-strain curves and damage-strain curves of specimens failed after a single impact

    图  7  试样5-1循环冲击应力-应变曲线及应变损伤曲线

    Figure  7.  Stress-strain and damage-strain curves of specimen 5-1 under cyclic impact

    图  8  不同载荷下试样损伤随循环冲击次数变化曲线

    Figure  8.  Variation of specimen damage with cyclic impact times under different loads

    图  9  各试样循环冲击总入射能统计柱状图

    Figure  9.  Statistical histogram of total incident energy of cyclic impact for each rock specimen

    图  10  不同冲击气压梯度循环冲击页岩应力-应变曲线

    Figure  10.  Variation of stress-strain curves of shale under different impact air pressure gradients

    图  11  能量吸收比随循环冲击次数的变化曲线

    Figure  11.  Relationship between the nergy absorption ratios and the times of cyclic impact

    图  12  各页岩试样能量吸收比统计图

    Figure  12.  Statistical chart of energy absorption ratios of shale specimens

    表  1  页岩试样基本物理力学参数

    Table  1.   Basic physical and mechanical parameters of the shale specimens

    密度/(kg·m−3)层理/(°)纵波波速/(m·s−1)抗压强度/MPa弹性模量/GPa泊松比抗拉强度/MPa
    2619041631564.7900.25.500
    下载: 导出CSV

    表  2  恒压冲击实验设计

    Table  2.   Design of constant pressure impact experiments

    循环冲击气压/MPa试样
    0.41-1, 1-2, 1-3
    0.62-1, 2-2, 2-3
    0.83-1, 3-2, 3-3
    1.04-1, 4-2, 4-3
    1.25-1, 5-2, 5-3
    下载: 导出CSV

    表  3  不同气压梯度循环冲击实验设计

    Table  3.   Design of variable-pressure impact experiments

    冲击气压梯度布置试样气压梯度/MPa
    1.0 MPa→0.9 MPa→0.8 MPa→
    0.7 MPa→0.6 MPa
    6-1, 6-2, 6-3−0.1 MPa
    1.2 MPa→1.0 MPa→0.8 MPa→
    0.6 MPa→0.4 MPa
    7-1, 7-2, 7-3−0.2 MPa
    0.6 MPa→0.7 MPa→0.8 MPa→
    0.9 MPa→1.0 MPa
    8-1, 8-2, 8-30.1 MPa
    0.4 MPa→0.6 MPa→0.8 MPa→
    1.0 MPa→1.2 MPa
    9-1, 9-2, 9-30.2 MPa
    0.8 MPa→0.8 MPa→0.8 MPa→
    0.8 MPa→0.8 MPa
    10-1, 10-2, 10-30 MPa
    下载: 导出CSV
  • [1] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景 [J]. 石油勘探与开发, 2012, 39(2): 129–136.

    JIA C Z, ZHENG M, ZHANG Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development [J]. Petroleum Exploration and Development, 2012, 39(2): 129–136.
    [2] TAYLOUR G B, RIFAI H S, HILDENBRAND Z L, et al. Elucidating hydraulic fracturing impacts on ground water quality using a regional geospatial statistical modeling approach [J]. Science of the Total Environment, 2016, 545: 114–126.
    [3] 韩烈祥, 朱丽华, 孙海芳, 等. LPG无水压裂技术 [J]. 天然气工业, 2014, 34(6): 48–54.

    HAN L X, ZHU L H, SUN H F, et al. LPG waterless fracturing technology [J]. Nature Gas Industry, 2014, 34(6): 48–54.
    [4] 翟成, 郑仰峰, 孙勇, 等. 一种页岩储层甲烷原位燃爆压裂与助燃剂安全投放协同控制方法: CN112761588B [P]. 2022-02-08.
    [5] 刘厅, 翟成, 赵洋, 等. 基于LF-NMR的页岩多尺度孔裂隙应力敏感性评价 [J]. 煤炭学报, 2021, 46(S2): 887–897. DOI: 10.13225/j.cnki.jccs.2021.0852.

    LIU T, ZHAI C, ZHAO Y, et al. Evaluation on stress sensitivity of multiscale pore and fracture in shale based on LF-NMR [J]. Journal of China Coal Society, 2021, 46(S2): 887–897. DOI: 10.13225/j.cnki.jccs.2021.0852.
    [6] JUN L, CAO L Y, GUO B Y, et al. Prediction of productivity of high energy gas-fractured oil wells [J]. Journal of Petroleum Science and Engineering, 2018, 160: 510–518. DOI: 10.1016/j.petrol.2017.10.071.
    [7] 陈莉静, 冯纪米, 吴小超. 高能气体瞬态破岩特性试验研究 [J]. 岩石力学与工程学报, 2020, 39(S2): 3271–3277.

    CHEN L J, FENG J M, WU X C. Experimental research on transient rock breaking characteristics of high-energy gas [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3271–3277.
    [8] 任山, 黄禹忠, 林永茂, 等. 燃爆诱导及酸处理新技术在川西须家河气藏的应用 [J]. 钻采工艺, 2009, 32(1): 31–32.

    REN S, HUANG Y Z, LIN Y M, et al. Application of propagated blast and acid treatment technology in Chuanxi Xujiahe gas reservoir [J]. Drilling and production Technology, 2009, 32(1): 31–32.
    [9] 任杨, 吴飞鹏, 蒲春生, 等. 长脉冲燃爆压裂复合燃速火药配方优化与应用 [J]. 科学技术与工程, 2014, 14(24): 68–73.

    REN Y, WU F P, PU C S, et al. The optimization and application of composite burning rate gunpowder formula of long pulse explosive fracturing [J]. Science Technology and Engineering, 2014, 14(24): 68–73.
    [10] 吴飞鹏, 徐尔斯, 尉雪梅, 等. 燃爆诱导水力压裂多裂缝耦合起裂规律 [J]. 天然气工业, 2018, 38(11): 65–72.

    WU F P, XU E S, WEI X M, et al. Laws of multi-fracture coupling initiation during blasting induced hydraulic fracturing [J]. Nature Gas Industry, 2018, 38(11): 65–72.
    [11] 吴飞鹏, 蒲春生, 陈德春, 等. 多级脉冲爆燃压裂作用过程耦合模拟 [J]. 石油勘探与开发, 2014, 41(5): 605–611.

    WU F P, PU C S, CHEN D C, et al. Coupling simulation of multistage pulse conflagration compression fracturing [J]. Petroleum Exploration and Development, 2014, 41(5): 605–611.
    [12] 田怡萍. 页岩爆燃压裂下裂缝扩展模式数值模拟研究[D]. 四川绵阳: 西南科技大学, 2019: 1–8.

    TIAN Y P. Numerical simulation study on crack propagation mode under shale deflagration fracturing[D]. Mianyang, Sichuan, China: Southwest University of Science and Technology,2019:1–8
    [13] 刘洪志. 多级燃爆压裂裂缝扩展规律模拟研究[D]. 山东青岛: 中国石油大学(华东), 2017: 2–9.

    LIU H Z. Simulation on the fracture propagation laws of multi-stage blasting fracturing[D]. Qingdao, Shandong, China: China University of Petroleum (East China), 2017:2–9
    [14] 夏昌敬, 谢和平, 鞠杨. 孔隙岩石的SHPB试验研究 [J]. 岩石力学与工程学报, 2006, 25(5): 896–900.

    XIA C J, XIE H P, JU Y. SHPB test on porous rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 896–900.
    [15] 许金余, 吕晓聪, 张军, 等. 循环冲击作用下围压对斜长角闪岩动态特性的影响研究 [J]. 振动与冲击, 2010, 29(8): 60–63.

    XU J Y, LYU X C, ZHANG J, et al. Research on dynamic mechanical performance of amphibolite under cyclical impact loadings at different confining pressures [J]. Journal of Vibration and Shock, 2010, 29(8): 60–63.
    [16] 甘德清, 田晓曦, 刘志义, 等. 循环冲击状态下砂岩力学及损伤特性研究 [J]. 中国矿业, 2021, 30(3): 203–211.

    GAN D Q, TIAN X X, LIU Z Y, et al. Study on mechanics and damage characteristics of sandstone under cyclic impact state [J]. China Mining Magazine, 2021, 30(3): 203–211.
    [17] SHAN R L, JIANG Y S, LI B Q. Obtaining dynamic complete stress–strain curves for rock using the split Hopkinson pressure bar technique [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(6): 983–992. DOI: 10.1016/S1365-1609(00)00031-9.
    [18] 金解放, 李夕兵, 常军然, 等. 循环冲击作用下岩石应力应变曲线及应力波特性 [J]. 爆炸与冲击, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.

    JIN J F, LI X B, CHANG J R, et al. Stress-strain curve and stress wave characteristics of rock subjected to cyclic impact loadings [J]. Explosion and Shock Waves, 2013, 33(6): 613–619. DOI: 10.11883/1001-1455(2013)06-0613-07.
    [19] 谭玉叶, 汪杰, 宋卫东, 等. 循环冲击下胶结充填体动载力学特性试验研究 [J]. 采矿与安全工程学报, 2019, 36(1): 184–190.

    TAN Y Y, WANG J, SONG W D, et al. Experimental study on mechanical properties of cemented tailings backfill under cycle dynamic loading test [J]. Journal of Mining & Safety Engineering, 2019, 36(1): 184–190.
    [20] 金解放, 李夕兵, 王观石, 等. 循环冲击载荷作用下砂岩破坏模式及其机理 [J]. 中南大学学报(自然科学版), 2012, 43(4): 1453–1461.

    JIN J F, LI X B, WANG G S, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1453–1461.
    [21] 金解放, 李夕兵, 殷志强, 等. 轴压和循环冲击次数对砂岩动态力学特性的影响 [J]. 煤炭学报, 2012, 37(6): 923–930.

    JIN J F, LI X B, YIN Z Q, et al. Effects of axial pressure and number of cyclic impacts on dynamic mechanical characteristics of sandstone [J]. Journal of China Coal Society, 2012, 37(6): 923–930.
    [22] 吕晓聪, 许金余, 赵德辉, 等. 冲击荷载循环作用下砂岩动态力学性能的围压效应研究 [J]. 工程力学, 2011, 28(1): 138–144.

    LYU X C, XU J Y, ZHAO D H, et al. Research on confining pressure effect of sandstone dynamic mechanical performance under the cyclical impact loadings [J]. Engineering Mechanics, 2011, 28(1): 138–144.
    [23] 余永强, 张文龙, 范利丹, 等. 冲击荷载下煤系砂岩应变率效应及能量耗散特征 [J]. 煤炭学报, 2021, 46(7): 2281–2293.

    YU Y Q, ZHANG W L, FAN L D, er al. Study on strain rate effect and energy dissipation characteristics of coal measures sandstone under impact loading [J]. Journal of China Coal Society, 2021, 46(7): 2281–2293.
    [24] 闫雷, 刘连生, 李仕杰, 等. 单轴循环冲击下弱风化花岗岩的损伤演化 [J]. 爆炸与冲击, 2020, 40(5): 053303. DOI: 10.11883/bzycj-2019-0354.

    YAN L, LIU L S, LI S J, et al. Damage evolution of weakly-weathered granite under uniaxial cyclic impact [J]. Explosion and Shock Waves, 2020, 40(5): 053303. DOI: 10.11883/bzycj-2019-0354.
    [25] 杜晶. 不同长径比下岩石冲击动力学特性研究[D]. 长沙: 中南大学, 2011: 51–72.

    DU J. Size effect on the dynamic mechanical properties under impact loads of rock [D]. Changsha, Hunan, China: Central South University, 2011:51-72.
    [26] 孙清佩, 张志镇, 李培超, 等. 黑色页岩动载破坏的层理效应及损伤本构模型研究 [J]. 岩石力学与工程学报, 2019, 38(7): 1319–1331. DOI: 10.13722/j.cnki.jrme.2018.1333.

    SUN Q P, ZHANG Z Z, LI P C, et al. Study on the bedding effect and damage constitutive model of black shale under dynamic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1319–1331. DOI: 10.13722/j.cnki.jrme.2018.1333.
    [27] 单仁亮, 薛友松, 张倩. 岩石动态破坏的时效损伤本构模型 [J]. 岩石力学与工程学报, 2003, 22(11): 1771–1776.

    SHAN R L, XUE Y S, ZHANG Q. Time dependent damage model of rock under dynamic loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1771–1776.
    [28] 杨圣奇, 徐卫亚, 韦立德, 等. 单轴压缩下岩石损伤统计本构模型与试验研究 [J]. 河海大学学报(自然科学版), 2004, 32(3): 200–203.

    YANG S Q, XU W Y, WEI L D, et al. Statistical constitutive model for rock damage under uniaxial compression and its experimental study [J]. Journal of Hohai University (Natural Sciences), 2004, 32(3): 200–203.
    [29] 朱晶晶. 循环冲击载荷下岩石力学特性与损伤模型的试验研究[D]. 长沙: 中南大学, 2012.

    ZHU J J. Experimental study of rock mechanical properties and damage model under cyclical dynamic loads [D].Changsha, Hunan, China: Central South University, 2012.
    [30] 朱晶晶, 李夕兵, 宫凤强, 等. 单轴循环冲击下岩石的动力学特性及其损伤模型研究 [J]. 岩土工程学报, 2013, 35(3): 531–539.

    ZHU J J, LI X B, GONG F Q, et al. Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 531–539.
    [31] 黎立云, 徐志强, 谢和平, 等. 不同冲击速度下岩石破坏能量规律的实验研究 [J]. 煤炭学报, 2011, 36(12): 2007–2011.

    LI L Y, XU Z Q, XIE H P, et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities [J]. Journal of China Coal Society, 2011, 36(12): 2007–2011.
    [32] 黎立云, 谢和平, 鞠杨, 等. 岩石可释放应变能及耗散能的实验研究 [J]. 工程力学, 2011, 28(3): 35–40.

    LI L Y, XIE H P, JU Y, et al. Experimental investigations of releasable energy and dissipative energy within rock [J]. Engineering Mechanics, 2011, 28(3): 35–40.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  123
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-09-13
  • 网络出版日期:  2022-09-14
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回