On dynamic behaviors and failure of bedding coal rock subjected to cyclic impact
-
摘要: 为研究复杂地况下含特征层理煤岩的动态力学行为,采用
∅ 50 mm分离式霍普金森压杆实验系统,对含层理 (0°、30°、45°、60°、90°)煤岩进行动态三轴循环冲击实验研究,并结合3D轮廓扫描仪量化其断裂界面,分析层理效应和围压效应对煤岩动态力学特性及其损伤破坏规律的影响。研究表明:围压的施加使煤岩应力-应变曲线出现弹性后效现象;较无围压状态,抗压强度提高3.9~4.2倍,失效应变增大2.59~3.05倍。随着层理角度的增大,煤岩的动态抗压强度、弹性模量和能量透射率均呈现先降低后升高的U形分布,在层理角为45°时均达到最小值;能量吸收率和断面粗糙度呈现先增大后减小的∩形分布,损伤变量呈现N形分布,在层理角为45°时达到最大值。煤岩的损伤破坏特征随层理角度的变化可概括为张拉破坏(0°)-剪切破坏(30°、45°和60°)-劈裂破坏(90°)的演变过程,所得特征规律可为实际复杂环境下煤层气资源安全高效开采提供理论支持。Abstract: Dynamic triaxial cyclic impact experiments on the coal rock samples with the bedding angles of 0°, 30°, 45°, 60°, and 90°, respectively, were conducted using a 50-mm split Hopkinson pressure bar (SHPB) system to study the dynamic mechanical behaviors of the coal rock with characteristic bedding under complex ground conditions. A 3D profile scanner was utilized to quantify the fracture interface roughness and to investigate the bedding effect on the dynamic fracture process of the coal rock. The bedding angle effect and confining pressure effect on the dynamic properties of the coal rock were explored by combining dynamic parameters such as compressive strength, elastic modulus, energy distribution evolution with the fracture surface roughness variation. The research shows that when confining pressure is applied, the stress-strain curve of the coal rock has an elastic aftereffect. The dynamic compressive strength and failure strain of the bedding coal rock with confining pressure are respectively 3.9−4.2 and 2.59−3.05 times higher than those without confining pressure. As the bedding angle increases, the dynamic compressive strength, elastic modulus, and energy transmitted ratio of the coal rock display the U-shaped distribution, which decreases first and then increases, reaching the minimum at the bedding angle of 45°. Meanwhile, the energy absorbed ratio and fracture surface roughness show the ∩-shaped distribution, first increasing and then decreasing, and the damage variable shows the N-shaped distribution, reaching the maximum at the bedding angle of 45°. The failure of the coal rock with 45° bedding is the most serious, which is more prone to intergranular and spalling fractures. However, the 90° bedding coal rock is more likely to absorb energy and to form transgranular fractures, resulting in a large number of mesoscopic fractures. Variation of the damage characteristics of the coal rocks with bedding angle can be summarized as a tensile damage (0°)-shear damage (30°, 45°, 60°)-splitting damage (90°) evolution process. The relevant characteristic results obtained from the experiments can provide a theoretical support for the safe and efficient exploitation of coalbed methane resources in the complex environment under practical working conditions. -
-
[1] 叶建平, 史保生, 张春才. 中国煤储层渗透性及其主要影响因素 [J]. 煤炭学报, 1999, 24(2): 8–12. DOI: 10.3321/j.issn:0253-9993.1999.02.002.YE J P, SHI B S, ZHANG C C. Coal reservoir permeability and its controlled factors in China [J]. Journal of China Coal Society, 1999, 24(2): 8–12. DOI: 10.3321/j.issn:0253-9993.1999.02.002. [2] MOORE T A. Coalbed methane: a review [J]. International Journal of Coal Geology, 2012, 101: 36–81. DOI: 10.1016/j.coal.2012.05.011. [3] HAMAWAND I, YUSAF T, HAMAWAND S G. Coal seam gas and associated water: a review paper [J]. Renewable and Sustainable Energy Reviews, 2013, 22: 550–560. DOI: 10.1016/j.rser.2013.02.030. [4] WANG D K, LV R H, WEI J P, et al. An experimental study of the anisotropic permeability rule of coal containing gas [J]. Journal of Natural Gas Science and Engineering, 2018, 53: 67–73. DOI: 10.1016/j.jngse.2018.02.026. [5] 傅雪海, 秦勇, 张万红, 等. 基于煤层气运移的煤孔隙分形分类及自然分类研究 [J]. 科学通报, 2005, 50(S1): 66–71. DOI: 10.3321/j.issn:0023-074X.2005.z1.009.FU X H, QIN Y, ZHANG W H, et al. Fractal classification and natural classification of coal pore structure based on migration of coal bed methane [J]. Chinese Science Bulletin, 2005, 50(S1): 66–71. DOI: 10.3321/j.issn:0023-074X.2005.z1.009. [6] LI B B, YANG K, XU P, et al. An experimental study on permeability characteristics of coal with slippage and temperature effects [J]. Journal of Petroleum Science and Engineering, 2019, 175: 294–302. DOI: 10.1016/j.petrol.2018.12.048. [7] 吴飞鹏, 刘洪志, 任杨, 等. 燃爆冲击作用下岩石初始破坏区形成机制与主控因素 [J]. 爆炸与冲击, 2016, 36(5): 663–669. DOI: 10.11883/1001-1455(2016)05-0663-07.WU F P, LIU Z H, REN Y, et al. Formation mechanism and main controlling factors of rock’s initial damaged zone under explosive impact effect [J]. Explosion and Shock Waves, 2016, 36(5): 663–669. DOI: 10.11883/1001-1455(2016)05-0663-07. [8] 牟恭雨, 罗宁, 申涛, 等. 聚能射流侵彻页岩储层损伤裂隙形成机制[J]. 爆炸与冲击, 2023, 43(3): 033301. DOI: 10.11883/bzycj-2022-0182.MU G Y, LUO N, SHEN T, et al. Mechanism of damage-induced fracture formation in shale reservoir penetrated by shaped charge jet [J]. Explosion and Shock Waves, 2023, 43(3): 033301. DOI: 10.11883/bzycj-2022-0182. [9] RAMULU M, CHAKRABORTY A K, SITHARAM T G. Damage assessment of basaltic rock mass due to repeated blasting in a railway tunnelling project-A case study [J]. Tunnelling and Underground Space Technology, 2009, 24(2): 208–221. DOI: 10.1016/j.tust.2008.08.002. [10] LI H B, XIA X, LI J C, et al. Rock damage control in bedrock blasting excavation for a nuclear power plant [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(2): 210–218. DOI: 10.1016/j.ijrmms.2010.11.016. [11] 谢和平. 深部岩体力学与开采理论研究进展 [J]. 煤炭学报, 2019, 44(5): 1283–1305. DOI: 10.13225/j.cnki.jccs.2019.6038.XIE H P. Research review of the state key research development program of China: deep rock mechanics and mining theory [J]. Journal of China Coal Society, 2019, 44(5): 1283–1305. DOI: 10.13225/j.cnki.jccs.2019.6038. [12] 鞠杨, 李业学, 谢和平, 等. 节理岩石的应力波动与能量耗散 [J]. 岩石力学与工程学报, 2006, 25(12): 2426–2434. DOI: 10.3321/j.issn:1000-6915.2006.12.007.JU Y, LI Y X, XIE H P, et al. Stress wave propagation and energy dissipation in jointed rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2426–2434. DOI: 10.3321/j.issn:1000-6915.2006.12.007. [13] MA Y, PAN Z J, ZHONG N N, et al. Experimental study of anisotropic gas permeability and its relationship with fracture structure of Longmaxi Shales, Sichuan Basin, China [J]. Fuel, 2016, 180: 106–115. DOI: 10.1016/j.fuel.2016.04.029. [14] TAN Y L, PAN Z J, LIU J S, et al. Experimental study of permeability and its anisotropy for shale fracture supported with proppant [J]. Journal of Natural Gas Science and Engineering, 2017, 44: 250–264. DOI: 10.1016/j.jngse.2017.04.020. [15] ZHAO Y X, ZHAO G F, JIANG Y D, et al. Effects of bedding on the dynamic indirect tensile strength of coal: laboratory experiments and numerical simulation [J]. International Journal of Coal Geology, 2014, 132: 81–93. DOI: 10.1016/j.coal.2014.08.007. [16] KONG X G, WANG E Y, LI S G, et al. Dynamic mechanical characteristics and fracture mechanism of gas-bearing coal based on SHPB experiments [J]. Theoretical and Applied Fracture Mechanics, 2020, 105: 102395. DOI: 10.1016/j.tafmec.2019.102395. [17] HAO X J, DU W S, ZHAO Y X, et al. Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading [J]. International Journal of Mining Science and Technology, 2020, 30(5): 659–668. DOI: 10.1016/j.ijmst.2020.06.007. [18] LIU X H, DAI F, ZHANG R, et al. Static and dynamic uniaxial compression tests on coal rock considering the bedding directivity [J]. Environmental Earth Sciences, 2015, 73(10): 5933–5949. DOI: 10.1007/s12665-015-4106-3. [19] CHEN Y L, ZHANG Y N, LI X L. Experimental study on influence of bedding angle on gas permeability in coal [J]. Journal of Petroleum Science and Engineering, 2019, 179: 173–179. DOI: 10.1016/j.petrol.2019.04.010. [20] ZHAO Y X, GONG S, HAO X J, et al. Effects of loading rate and bedding on the dynamic fracture toughness of coal: laboratory experiments [J]. Engineering Fracture Mechanics, 2017, 178: 375–391. DOI: 10.1016/j.engfracmech.2017.03.011. [21] WANG W, ZHAO Y X, TENG T, et al. Influence of bedding planes on mode Ⅰ and mixed-mode (Ⅰ-Ⅱ) dynamic fracture toughness of coal: analysis of experiments [J]. Rock Mechanics and Rock Engineering, 2021, 54(1): 173–189. DOI: 10.1007/s00603-020-02250-9. [22] FAN X R, LUO N, LIANG H L, et al. Dynamic breakage characteristics of shale with different bedding angles under the different ambient temperatures [J]. Rock Mechanics and Rock Engineering, 2021, 54(6): 3245–3261. DOI: 10.1007/s00603-021-02463-6. [23] 王卫华, 李夕兵, 左宇军. 非线性法向变形节理对弹性纵波传播的影响 [J]. 岩石力学与工程学报, 2006, 25(6): 1218–1225. DOI: 10.3321/j.issn:1000-6915.2006.06.020.WANG W H, LI X B, ZUO Y J. Effects of single joint with nonlinear normal deformation on P-wave propagation [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1218–1225. DOI: 10.3321/j.issn:1000-6915.2006.06.020. [24] 李业学, 谢和平, 朱哲明, 等. 应力波穿越分形节理时的透反射规律研究 [J]. 岩石力学与工程学报, 2009, 28(1): 120–129. DOI: 10.3321/j.issn:1000-6915.2009.01.016.LI Y X, XIE H P, ZHU Z M, et al. Study on rules of transmission and reflection of stress wave across fractal joint [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 120–129. DOI: 10.3321/j.issn:1000-6915.2009.01.016. [25] 许金余, 范建设, 吕晓聪. 围压条件下岩石的动态力学特性 [M]. 西安: 西北工业大学出版社, 2012: 21–25.XU J Y, FAN J S, LYU X C. Dynamic mechanical properties of rock with the confining pressure [M]. Xi’an: Northwestern Polytechnical University Press, 2012: 21–25. [26] LEWANDOWSKI C M, COINVESTIGATOR N. Split Hopkinson (Kolsky) bar: design, testing and applications [M]. Springer, 2015: 6–12. [27] FAKHIMI A, AZHDARI P, KIMBERLEY J. Physical and numerical evaluation of rock strength in Split Hopkinson Pressure Bar testing [J]. Computers and Geotechnics, 2018, 102: 1–11. DOI: 10.1016/j.compgeo.2018.05.009. [28] FENG J J, WANG E Y, CHEN X, et al. Energy dissipation rate: an indicator of coal deformation and failure under static and dynamic compressive loads [J]. International Journal of Mining Science and Technology, 2018, 28(3): 397–406. DOI: 10.1016/j.ijmst.2017.11.006. [29] LUO N, SUO Y C, FAN X R, et al. Research on confining pressure effect of pore structure of coal-rich in coalbed methane under cyclic impact [J]. Energy Reports, 2022, 8: 7336–7348. DOI: 10.1016/j.egyr.2022.05.238. [30] SUO Y C, LUO N, CHAI Y B, et al. Experimental investigation of dynamic mechanical characteristics of inhomogeneous composite coal-sandstone combination for coalbed methane development [J]. Heliyon, 2022, 8: e11628. DOI: 10.1016/j.heliyon.2022.e11628. [31] 谢和平, 彭瑞东, 鞠杨, 等. 岩石破坏的能量分析初探 [J]. 岩石力学与工程学报, 2005, 24(15): 2603–2608. DOI: 10.3321/j.issn:1000-6915.2005.15.001.XIE H P, PENG R D, JU Y, et al. On energy analysis of rock failure [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2603–2608. DOI: 10.3321/j.issn:1000-6915.2005.15.001. [32] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则 [J]. 岩石力学与工程学报, 2005, 24(17): 3003–3010. DOI: 10.3321/j.issn:1000-6915.2005.17.001.XIE H P, JU, Y, LI L Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003–3010. DOI: 10.3321/j.issn:1000-6915.2005.17.001. [33] 黎立云, 徐志强, 谢和平, 等. 不同冲击速度下岩石破坏能量规律的实验研究 [J]. 煤炭学报, 2011, 36(12): 2007–2011. DOI: 10.13225/j.cnki.jccs.2011.12.012.LI L Y, XU Z Q, XIE H P, et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities [J]. Journal of China Coal Society, 2011, 36(12): 2007–2011. DOI: 10.13225/j.cnki.jccs.2011.12.012. [34] 刘晓辉, 薛洋, 周济芳, 等. 层理煤岩动态破坏能量变化规律及损伤特征 [J]. 地下空间与工程学报, 2021, 17(4): 1052–1062.LIU X H, XUE Y, ZHOU J F, et al. Dynamic failure energy change and damage characteristics of bedding coal rock [J]. Chinese Journal of Underground Space and Engineering, 2021, 17(4): 1052–1062. [35] 周磊, 姜亚成, 朱哲明, 等. 动载荷作用下裂隙岩体的止裂机理分析 [J]. 爆炸与冲击, 2021, 41(5): 053102. DOI: 10.11883/bzycj-2020-0125.ZHOU L, JIANG Y C, ZHU Z M, et al. Mechanism study of preventing crack propagation of fractured rock under dynamic loads [J]. Explosion and Shock Waves, 2021, 41(5): 053102. DOI: 10.11883/bzycj-2020-0125. [36] 杨国梁, 毕京九, 郭伟民, 等. 加载角度对层理页岩裂纹扩展影响的实验研究 [J]. 爆炸与冲击, 2021, 41(9): 093101. DOI: 10.11883/bzycj-2021-0097.YANG G L, BI J J, GUO W M, et al. Experimental study on the effect of loading angle on crack propagation in bedding shale [J]. Explosion and Shock Waves, 2021, 41(9): 093101. DOI: 10.11883/bzycj-2021-0097. -
推荐阅读
反射爆炸应力波作用下动静裂纹的贯通机理
周星源 等, 爆炸与冲击, 2025
隧道表面爆破地震波的产生机制及传播特征
蒙贤忠 等, 爆炸与冲击, 2024
考虑岩体破坏分区的岩石爆破爆炸荷载历程研究
孙鹏昌 等, 爆炸与冲击, 2024
基于高压气体驱动的爆炸波模拟激波管冲击波衰减历程控制方法
程帅 等, 爆炸与冲击, 2024
冲击荷载下岩体应力波振动信号频率特征分析
冯佳兴 等, 高压物理学报, 2025
不同不耦合系数下花岗岩爆破损伤特性的离散元模拟
袁增森 等, 高压物理学报, 2022
真三轴单面卸荷条件下环向应力对岩爆能量演化规律的影响
张华旭 等, 高压物理学报, 2025
Modified chitosan with different phenolic acids: characterization, physicochemical properties, and biological activity
Zhang, Bingjie et al., FOOD CHEMISTRY, 2024
Non-monotonic effect of differential stress and temperature on mechanical property and rockburst proneness of granite under high-temperature true triaxial compression
GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2024
Peridynamics simulating of dynamics crack propagation in rock mass under blasting load
SIMULATION MODELLING PRACTICE AND THEORY