Numerical analysis of dynamic response of ceramic particle reinforced polyurethane composites under explosive loading
-
摘要: 陶瓷球作为增强相加入到聚氨酯基体中,能够提高复合材料的抗冲击性能。为研究毫米级陶瓷球对聚氨酯复合材料抗冲击性能的影响,基于LS-DYNA的ALE算法对直径为4.5 mm的Al2O3陶瓷球增强聚氨酯基复合材料进行小当量爆炸载荷下的动态响应数值模拟,并探究爆炸当量和陶瓷球尺寸对复合材料性能的影响。结果表明,随着爆炸当量的提高,复合材料挠度/速度增长较为稳定且聚氨酯的吸能效率不断提升;在相同面密度下,陶瓷球尺寸越小,复合材料板受冲击载荷的变化敏感度越低,总体的加速度波动范围也变大。Abstract: As a traditional energy absorbing and shock absorbing protective material, polyurethane has high requirements for its dynamic mechanical properties. An effective way to improve the impact resistance of polyurethane is to add ceramic balls as reinforcement in polyurethane matrix. The existing research on ceramic ball reinforced materials mainly focuses on nano and micro scale. The dynamic response of Al2O3 ceramic ball reinforced polyurethane matrix composites under small equivalent explosion load was simulated by establishing a numerical model of polyurethane embedded millimeter ceramic ball and using ALE algorithm of LS-DYNA and the correctness of the numerical model was verified by the empirical formula of henrych’s free field explosion overpressure and the penetration experiment of polyurethane-ceramic sphere composite plate. The deformation process of the composite plate was obtained and through the comparison of the acceleration of the composite plate and the pure polyurethane, it was found that the acceleration of the ceramic ball and the polyurethane always maintain the opposite direction, which proves that the existence of the ceramic ball reduces the overall acceleration fluctuation range; Furthermore, the effects of explosion equivalent on the velocity, displacement and energy absorption of composite plates and the effects of different explosion equivalent and ceramic ball size on the properties of composite materials under a certain areal density were discussed. The results show that the overall acceleration fluctuation range of polyurethane-ceramic balls composite material is about 1×105 m/s2 lower than that of pure polyurethane. With the increase of explosive equivalent, the deflection of the composite increased steadily to 1 mm, and the energy absorption proportion of polyurethane increased from 69.6% to 80.3%. Under the same areal density, both the deformation resistance of the composite plate and the overall acceleration fluctuation range increases with the increase of the diameter of the ceramic ball.
-
Key words:
- polyurethane /
- ceramic balls /
- explosion shock /
- dynamic response
-
A/GPa B/GPa R1 R2 ρ/(kg·m−3) D/(m·s−1) pCJ/GPa e0/(GJ·m−3) ω 379 3.9 4.15 0.9 1590 6930 19.5 7.0 0.35 表 2 陶瓷球材料参数
Table 2. Ceramic ball material parameters
ρ/(kg·m−3) G/GPa A B C M N D1 D2 3859.9 118 0.95 0.28 0.0076 0.6 0.64 0.1 0.7 表 3 剩余速度的数值模拟与实验对比
Table 3. Comparison of residual velocity between simulation and experiment
初速度/(m·s−1) 剩余速度/(m·s−1) 实验 数值模拟 相对误差/% 135.9 0 0 0 316.5 249.4 246.0 1.36 表 4 陶瓷球尺寸参数
Table 4. Dimension parameters of ceramic ball
2rc/mm nc ρs/(g·mm−2) d/mm m/% 3.0 1613 1.186 0.1 50 4.5 495 1.201 0.8 48 6.0 203 1.189 4.3 48 -
[1] TOUNICI A, JM MARTIN. Influence of the surface chemistry of graphene oxide on the structure-property relationship of waterborne poly(urethane urea) adhesive [J]. Materials, 2021, 14(16): 350–379. DOI: 10.3390/ma14164377. [2] DUANG Z, HE H, LIANG W, et al. Tensile, quasistatic and dynamic fracture properties of nano-Al2O3 -modified epoxy resin [J]. Materials, 2018, 11(6): 905–917. DOI: 10.3390/ma11060905. [3] 方奕欣, 陈蔚, 蒋震宇, 等. 碳纤维和SiO2纳米颗粒增强环氧树脂复合材料的压缩性能 [J]. 复合材料学报, 2019, 36(6): 1343–1352. DOI: 10.13801/j.cnki.fhclxb.20180907.001.FANG Y X, CHENG W, JIANG Z Y, et al. Compressive properties of epoxy resin composites reinforced with carbon fiber and SiO2 nanoparticles [J]. Journal of Composite Materials, 2019, 36(6): 1343–1352. DOI: 10.13801/j.cnki.fhclxb.20180907.001. [4] EVORA V, SHUKLA A. Fabrication, characterization, and dynamic behavior of polyester/TiO2 nanocomposites [J]. Materials Science & Engineering: A, 2003, 361(1): 358–366. DOI: 10.1016/S0921-5093(03)00536-7. [5] 钟发春, 刘忠平, 朱珈庆, 等. 纳米微球增强聚氨酯泡沫的制备及抗冲击应用 [J]. 包装工程, 2020, 41(1): 167–172. DOI: 10.19554/j.cnki.1001-3563.2020.01.026.ZHONG F C, LIU Z P, ZHU J Q, et al. Preparation and impact resistance of polyurethane foam reinforced by nano microspheres [J]. Packaging Engineering, 2020, 41(1): 167–172. DOI: 10.19554/j.cnki.1001-3563.2020.01.026. [6] 胡勤, 王进华, 吕娟, 等. 6061铝合金约束Al2O3陶瓷球复合材料抗弹性能和抗弹机理研究 [J]. 振动与冲击, 2018, 37(18): 165–169, 183. DOI: 10.13465/j.cnki.jvs.2018.18.024.HU Q, WANG J H, LYU J et al. Study on ballistic properties and mechanism of 6061 aluminum alloy confined Al2O3 ceramic ball composites [J]. Vibration and Shock, 2018, 37(18): 165–169, 183. DOI: 10.13465/j.cnki.jvs.2018.18.024. [7] 郑伟峰, 周来水, 袁铁军, 等. 颗粒Al2O3增强环氧树脂复合材料的微波固化动力学及性能 [J]. 高分子材料科学与工程, 2017, 33(10): 65–71. DOI: 10.16865/j.cnki.1000-7555.2017.10.012.ZHENG W F, ZHOU L S, YUAN T J, et al. Microwave curing kinetics and properties of particle Al2O3 reinforced epoxy resin composites [J]. Polymer materials science and Engineering, 2017, 33(10): 65–71. DOI: 10.16865/j.cnki.1000-7555.2017.10.012. [8] 邹广平, 吴松阳, 徐舒博, 等. 石墨烯/陶瓷颗粒增强聚氨酯基复合材料动态压缩性能 [J]. 兵工学报, 2023, 44(3): 728–735. DOI: 10.12382/bgxb.2021.0777.ZHOU G P , WU S Y , XU S B, et al. Dynamic compression properties of graphene/ceramic particle reinforced polyurethane matrix composites [J]. Acta Armamentarii, 2023, 44(3): 728–735. DOI: 10.12382/bgxb.2021.0777. [9] ZHOU R, LU D H, JIANG Y H, et al. Mechanical properties and erosion wear resistance of polyurethane matrix composites [J]. Wear, 2005, 259(1): 676–683. DOI: 10.1016/j.wear.2005.02.118. [10] OUYANG X. Effects of modified Al2O3-decorated ionic liquid on the mechanical properties and impact resistance of a polyurethane elastomer [J]. Materials, 2021(16): 75–83. DOI: 10.3390/ma14164712. [11] ZHU F, ZHAO L. A numerical simulation of the blast impact of square metallic sandwich panels [J]. International Journal of Impact Engineering, 2009, 36(5): 687–699. DOI: 10.1016/j.ijimpeng.2008.12.004. [12] LARCHER M . Simulation of the effects of an air blast wave[R]. Ispra, Italy: Joint Research Centre, 2007. [13] PAWAR J M , PATNAIK A , BISWAS S K, et al. Comparison of ballistic performance of Al2O3 and AlN ceramics [J]. International Journal of Impact Engineering, 2016, 98: 42–51. DOI: 10.1016/j.ijimpeng.2016.08.002. [14] FOX J W, GOURLBOURNE N C. On the dynamic electromechanical loading of dielectric elastomer membranes [J]. Journal of the Mechanics & Physics of Solids, 2008, 56(8): 2669–2686. DOI: 10.1016/j.jmps.2008.03.007. [15] RIVLIN R S. Large elastic deformations of isotropic materials: Ⅳ: further developments of the general theory [J]. Philosophical Transactions of the Royal Society of London: Mathematical and Physical Sciences, 1948, 241(835): 379–397. DOI: 10.2307/91391. [16] ZOU G P, YANG Y, WU S Y, et al. Study on the penetration resistance of a honeycomb composite structure coated with polyurethane elastomer [J]. Thin-Walled Structures, 2023, 187(6): 110747. DOI: 10.1016/j.tws.2023.110747. [17] HENRYCH J, MAIOR R. The dynamics of explosion and its use [M]. New York: Elsevier Scientific Publishing Company, 1979: 286–293.