On the mechanism of magnetic field effect on methane explosion
-
摘要: 为了揭示磁场对甲烷爆炸特征的影响机理,开展了磁场对甲烷爆炸影响实验,得出了磁场对甲烷爆炸压力、火焰传播速度、爆炸产物组分及体积分数的影响规律。利用Chemkin-Pro软件模拟甲烷爆炸链式反应过程,得到了甲烷爆炸过程中的关键自由基和基元反应。通过理论计算,对不同自由基在磁场作用下的受力进行分析,揭示了磁场对甲烷爆炸的影响机理。研究结果表明,磁场能够降低甲烷爆炸压力和火焰传播速度,降低CO和CO2的生成量,增加甲烷的残余量;•H、•O、•OH、•CH3、•CH2O是甲烷爆炸的关键自由基,由于•O的磁化率较高,被吸引到磁感线密集的区域,•O与其他自由基的碰撞几率减少,从而降低•HCO→CO→CO2的链式反应速率,导致CO和CO2生成量降低,且甲烷爆炸强度降低。Abstract: To study the effect mechanism of magnetic fields on methane explosion, an experiment was carried out by detonating the premixed gas of methane with the volume fraction of 9.5% and air as the rest constituent in a magnetic fields. Effect patterns of magnetic fields on methane explosion characteristics emerged based on the explosion pressure measured by pressure sensors and flame propagation velocity measured by detonation velocity meter. The gas after explosion was quantitatively sampled by gas sampler, and the volume fraction of reactants and products was detected by flue gas analyzer and gas chromatograph. Thus, the effect patterns of magnetic fields on the volume fraction of methane explosion products and reactants was obtained. The experimental results show that in the magnetic fields, the maximum explosion pressure of methane is decreased by 27.33%, and the explosion pressure rise rate is decreased by 40.96%. Along the flame propagation direction, the magnetic fields first promote and then suppress the flame propagation velocity of methane explosion, and the suppression effect is stronger than the promotion effect. Under the magnetic fields, the average flame propagation velocity of methane explosion is decreased by 16.39%. The volume fraction of reactants and products show obvious differences. The residue of methane and oxygen increased by 28.81% and 66.98%, respectively. The production of CO and CO2 decreased by 20.00% and 12.90%, respectively. Combined with sensitivity analysis, the methane explosion chain reaction process is simulated by the Chemkin-Pro software to derive the key radical and radical reactions in the methane explosion process. The •H, •O, •OH, •CH3, •CH2O are the key free radicals of methane explosion. Through theoretical calculation, the forces of different free radicals under the action of magnetic fields are analyzed. Combined with the reaction paths analysis, the effect mechanism of magnetic fields on methane explosion was explored. Due to the high magnetic susceptibility of •O, it is attracted to areas with dense magnetic induction line. The collision probability of •O with other free radicals is reduced, thereby reducing the rate of the •HCO→CO→CO2 chain reaction, resulting in a decrease in the production of CO and CO2, which ultimately leads to a decrease in methane explosion intensity.
-
Key words:
- magnetic field /
- free radicals /
- magnetic susceptibility /
- reaction paths /
- chain reaction
-
表 1 甲烷爆炸反应物和产物的体积分数
Table 1. Volume fraction of reactants and products on methane explosion
组分 体积分数/% 无磁场 有磁场 甲烷 0.004 7 0.006 1 氧气 1.06 1.77 一氧化碳 0.44 0.35 二氧化碳 0.31 0.27 表 2 甲烷爆炸数值模拟初始参数
Table 2. Initial parameters for numerical simulation of methane explosions
体积分数/% 温度/K 压力/kPa 时间/s CH4 N2 O2 9.500 71.495 19.005 1200 101 0.05 表 3 298 K下自由基的
${\boldsymbol{n}} $ 、$ {\boldsymbol{S}}_{\boldsymbol{i}} $ 、$ {{\boldsymbol{\ \mu}} }_{\bf{s}} $ 和${{\boldsymbol{\ \chi}} }_{{\boldsymbol{i}}}$ Table 3. n,
$ {\boldsymbol{S}}_{\boldsymbol{i}} $ ,$ {{\boldsymbol{\ \mu}} }_{\bf{s}} $ and$ {{\boldsymbol{\ \chi}} }_{{\boldsymbol{i}}} $ of free radicals at 298 K自由基 n $ {S}_{i} $ $ {\mu }_{\mathrm{s}} $/ (10−23 A·m2) $ {\chi }_{i} $/(10−6 m3·kg) •H 1 1/2 1.61 15.83 •O 2 2/2 2.62 2.64 •OH 1 1/2 1.61 1.24 •CH3 1 1/2 1.61 1.06 •CH2O 2 2/2 2.62 1.41 表 4 影响CH4生成CO和CO2的关键基元反应
Table 4. Important elementary reactions affecting formation of CO and CO2 from CH4
基元反应 反应类型 •HCO+•O=CO+•OH 生成 •HCO= CO+•H 生成 CO+•O=CO2 生成 CO+•OH=CO2+•H 生成 •HCO+O=CO2+•H 生成 CO2+•CH2=•CH2O+CO 消耗 -
[1] BIAN Y C, DING W, HU L, et al. Magneto-revealing and acceleration of hidden kirkendall effect in galvanic replacement reaction [J]. The Journal of Physical Chemistry Letters, 2021, 12(22): 5294–5300. DOI: 10.1021/acs.jpclett.1c01327. [2] 徐广智. 电子自旋共振波谱基本原理 [M]. 北京: 科学出版社, 1978: 1–4. [3] ALNAIMAT F, DAGHER S, MATHEW B, et al. Microfluidics based magnetophoresis: a review [J]. The Chemical Record, 2018, 18(11): 1596–1612. DOI: 10.1002/tcr.201800018. [4] 栗建桥, 马天宝, 宁建国. 爆炸对自然磁场干扰机理 [J]. 力学学报, 2018, 50(5): 1206–1218. DOI: 10.6052/0459-1879-18-081.LI J Q, MA T B, NING J G. Mechanism of explosion-induced disturbance in natural magnetic field [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1206–1218. DOI: 10.6052/0459-1879-18-081. [5] UENO S, HARADA K. Experimental difficulties in observing the effects of magnetic fields on biological and chemical processes [J]. IEEE Transactions on Magnetics, 1986, 22(5): 868–873. DOI: 10.1109/TMAG.1986.1064579. [6] BAKER J, CALVERT M E. A study of the characteristics of slotted laminar jet diffusion flames in the presence of non-uniform magnetic fields [J]. Combustion and Flame, 2003, 133(3): 345–357. DOI: 10.1016/S0010-2180(03)00021-X. [7] ZHOU S Y, GAO J C, LUO Z M, et al. Role of ferromagnetic metal velvet and DC magnetic field on the explosion of a C3H8/air mixture-effect on reaction mechanism [J]. Energy, 2022, 239: 122218. DOI: 10.1016/j.energy.2021.122218. [8] RAMNATH V, LYONS K M. The potential of simple, low-cost permanent magnets for flame manipulation in flow fields [J]. Aeronautics and Aerospace Open Access Journal, 2018, 2(1): 1–5. DOI: 10.15406/aaoaj.2018.02.00022. [9] PANDEY P K, KUMAR M, KUMAR V, et al. Measurement of temperature and temperature profile of wick stabilized micro diffusion flame under the effect of magnetic field using digital speckle pattern interferometry [J]. Optical Engineering, 2017, 56(1): 014106. DOI: 10.1117/1.OE.56.1.014106. [10] AGARWAL S, KUMAR V, SHAKHER C. Temperature measurement of wick stabilized micro diffusion flame under the influence of magnetic field using digital holographic interferometry [J]. Optics and Lasers in Engineering, 2018, 102: 161–169. DOI: 10.1016/j.optlaseng.2017.10.019. [11] 朱秉森. 磁场对层流预混火焰及氮氧化物生成特性的影响 [D]. 包头: 内蒙古科技大学, 2014.ZHU B S. Effect of magnetic field on premixed laminar flame and generation characteristics of nitrogen oxide [D]. Baotou: Inner Mongolia University of Science & Technology, 2014. [12] KAJIMOTO T, YAMADA E, SHINODA M, et al. Analysis of flame structure by isotope shift-planar laser induced fluorescence spectrometry of trace OH and OD radicals [J]. Microchemical Journal, 2013, 106: 334–339. DOI: 10.1016/j.microc.2012.09.004. [13] YAMADA E, SHINODA M, YAMASHITA H, et al. Experimental and numerical analyses of magnetic effect on OH radical distribution in a hydrogen-oxygen diffusion flame [J]. Combustion and Flame, 2003, 135(4): 365–379. DOI: 10.1016/j.combustflame.2003.08.005. [14] 王骞. 磁场条件下燃烧机理的研究 [D]. 武汉: 华中科技大学, 2012.WANG Q. An investigation on combustion mechanism under the condition of magnetic fields [D]. Wuhan: Huazhong University of Science and Technology, 2012. [15] 高建村, 王乐, 胡守涛, 等. 不同磁性金属丝对丙烷爆炸反应抑制机理研究 [J]. 中国安全生产科学技术, 2020, 16(7): 125–130. DOI: 10.11731/j.issn.1673-193x.2020.07.020.GAO J C, WANG L, HU S T, et al. Study on inhibition mechanism of different magnetic metal wires on propane explosion [J]. Journal of Safety Science and Technology, 2020, 16(7): 125–130. DOI: 10.11731/j.issn.1673-193x.2020.07.020. [16] YANG X G, HU S T, WANG L, et al. Effect of magnetic field on dynamics of 5% propane/air premixed gases [J]. Journal of Physics: Conference Series, 2021, 1948(1): 012133. DOI: 10.1088/1742-6596/1948/1/012133. [17] 高建村, 杨喜港, 胡守涛, 等. 外加磁场对乙炔气体爆炸反应影响研究 [J]. 爆炸与冲击, 2022, 42(7): 075401. DOI: 10.11883/bzycj-2021-0417.GAO J C, YANG X G, HU S T, et al. Effect of external magnetic field on explosion reaction of acetylene gas [J]. Explosion and Shock Waves, 2022, 42(7): 075401. DOI: 10.11883/bzycj-2021-0417. [18] WANG L, GAO J C, ZHOU S Y, et al. A product analysis-based study on the mechanism of inflammable gas explosion suppression [J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104311. DOI: 10.1016/j.jlp.2020.104311. [19] 《空气和废气监测分析方法》编委会. 空气和废气监测分析方法 [M]. 4版. 北京: 中国环境出版社, 2003: 521–550. [20] WANG H, YOU X Q, AMEYA V, et al. USC mech version Ⅱ: High-temperature combustion reaction model of H2/CO/C1-C4 compounds [EB/OL]. (2007-05)[2022-06-13]. http://ignis.usc.edu/USC_Mech_II.htm. [21] 范康年. 谱学导论 [M]. 2版. 北京: 高等教育出版社, 2011: 112–122.