磁场效应对甲烷爆炸影响的机理

高建村 杨喜港 王乐 洪子金 胡守涛 李如霞 孙谞

高建村, 杨喜港, 王乐, 洪子金, 胡守涛, 李如霞, 孙谞. 磁场效应对甲烷爆炸影响的机理[J]. 爆炸与冲击, 2023, 43(1): 012101. doi: 10.11883/bzycj-2022-0259
引用本文: 高建村, 杨喜港, 王乐, 洪子金, 胡守涛, 李如霞, 孙谞. 磁场效应对甲烷爆炸影响的机理[J]. 爆炸与冲击, 2023, 43(1): 012101. doi: 10.11883/bzycj-2022-0259
GAO Jiancun, YANG Xigang, WANG Le, HONG Zijin, HU Shoutao, LI Ruxia, SUN Xu. On the mechanism of magnetic field effect on methane explosion[J]. Explosion And Shock Waves, 2023, 43(1): 012101. doi: 10.11883/bzycj-2022-0259
Citation: GAO Jiancun, YANG Xigang, WANG Le, HONG Zijin, HU Shoutao, LI Ruxia, SUN Xu. On the mechanism of magnetic field effect on methane explosion[J]. Explosion And Shock Waves, 2023, 43(1): 012101. doi: 10.11883/bzycj-2022-0259

磁场效应对甲烷爆炸影响的机理

doi: 10.11883/bzycj-2022-0259
基金项目: 北京市自然科学基金(2214071);北京市教委科技计划(KM201910017001)
详细信息
    作者简介:

    高建村(1964- ),男,博士,教授,gaojiancun@bipt.edu.cn

    通讯作者:

    胡守涛(1986- ),男,博士,讲师,hushoutao@bipt.edu.cn

  • 中图分类号: O389

On the mechanism of magnetic field effect on methane explosion

  • 摘要: 为了揭示磁场对甲烷爆炸特征的影响机理,开展了磁场对甲烷爆炸影响实验,得出了磁场对甲烷爆炸压力、火焰传播速度、爆炸产物组分及体积分数的影响规律。利用Chemkin-Pro软件模拟甲烷爆炸链式反应过程,得到了甲烷爆炸过程中的关键自由基和基元反应。通过理论计算,对不同自由基在磁场作用下的受力进行分析,揭示了磁场对甲烷爆炸的影响机理。研究结果表明,磁场能够降低甲烷爆炸压力和火焰传播速度,降低CO和CO2的生成量,增加甲烷的残余量;•H、•O、•OH、•CH3、•CH2O是甲烷爆炸的关键自由基,由于•O的磁化率较高,被吸引到磁感线密集的区域,•O与其他自由基的碰撞几率减少,从而降低•HCO→CO→CO2的链式反应速率,导致CO和CO2生成量降低,且甲烷爆炸强度降低。
  • 图  1  磁场影响可燃气体爆炸实验装置

    Figure  1.  Experimental apparatus for combustible gas explosion affected by magnetic fields

    图  2  不同条件下甲烷爆炸压力曲线

    Figure  2.  Explosion pressure of methane under different conditions

    图  3  甲烷爆炸的最大爆炸压力和爆炸压力上升速率

    Figure  3.  Maximum explosion pressure and explosion pressure rise rate of methane explosion

    图  4  火焰传播速度和火焰平均传播速度

    Figure  4.  Explosion flame propagation velocity and flame average propagation velocity

    图  5  爆炸产物体积分数

    Figure  5.  Volume fraction of explosion products

    图  6  甲烷的敏感性系数变化曲线

    Figure  6.  Methane sensitivity coefficient variation curves

    图  7  有无磁场下CH4生成CO和CO2的反应路径

    Figure  7.  Reaction pathways for the formation of CO and CO2 from CH4 with and without a magnetic field

    表  1  甲烷爆炸反应物和产物的体积分数

    Table  1.   Volume fraction of reactants and products on methane explosion

    组分体积分数/%
    无磁场有磁场
    甲烷0.004 70.006 1
    氧气1.061.77
    一氧化碳0.440.35
    二氧化碳0.310.27
    下载: 导出CSV

    表  2  甲烷爆炸数值模拟初始参数

    Table  2.   Initial parameters for numerical simulation of methane explosions

    体积分数/%温度/K压力/kPa时间/s
    CH4N2O2
    9.50071.49519.00512001010.05
    下载: 导出CSV

    表  3  298 K下自由基的${\boldsymbol{n}} $$ {\boldsymbol{S}}_{\boldsymbol{i}} $$ {{\boldsymbol{\ \mu}} }_{\bf{s}} $${{\boldsymbol{\ \chi}} }_{{\boldsymbol{i}}}$

    Table  3.   n, $ {\boldsymbol{S}}_{\boldsymbol{i}} $, $ {{\boldsymbol{\ \mu}} }_{\bf{s}} $ and $ {{\boldsymbol{\ \chi}} }_{{\boldsymbol{i}}} $ of free radicals at 298 K

    自由基n$ {S}_{i} $$ {\mu }_{\mathrm{s}} $/ (10−23 A·m2)$ {\chi }_{i} $/(10−6 m3·kg)
    •H11/21.6115.83
    •O22/22.622.64
    •OH11/21.611.24
    •CH311/21.611.06
    •CH2O22/22.621.41
    下载: 导出CSV

    表  4  影响CH4生成CO和CO2的关键基元反应

    Table  4.   Important elementary reactions affecting formation of CO and CO2 from CH4

    基元反应反应类型
    •HCO+•O=CO+•OH生成
    •HCO= CO+•H生成
    CO+•O=CO2生成
    CO+•OH=CO2+•H生成
    •HCO+O=CO2+•H生成
    CO2+•CH2=•CH2O+CO消耗
    下载: 导出CSV
  • [1] BIAN Y C, DING W, HU L, et al. Magneto-revealing and acceleration of hidden kirkendall effect in galvanic replacement reaction [J]. The Journal of Physical Chemistry Letters, 2021, 12(22): 5294–5300. DOI: 10.1021/acs.jpclett.1c01327.
    [2] 徐广智. 电子自旋共振波谱基本原理 [M]. 北京: 科学出版社, 1978: 1–4.
    [3] ALNAIMAT F, DAGHER S, MATHEW B, et al. Microfluidics based magnetophoresis: a review [J]. The Chemical Record, 2018, 18(11): 1596–1612. DOI: 10.1002/tcr.201800018.
    [4] 栗建桥, 马天宝, 宁建国. 爆炸对自然磁场干扰机理 [J]. 力学学报, 2018, 50(5): 1206–1218. DOI: 10.6052/0459-1879-18-081.

    LI J Q, MA T B, NING J G. Mechanism of explosion-induced disturbance in natural magnetic field [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1206–1218. DOI: 10.6052/0459-1879-18-081.
    [5] UENO S, HARADA K. Experimental difficulties in observing the effects of magnetic fields on biological and chemical processes [J]. IEEE Transactions on Magnetics, 1986, 22(5): 868–873. DOI: 10.1109/TMAG.1986.1064579.
    [6] BAKER J, CALVERT M E. A study of the characteristics of slotted laminar jet diffusion flames in the presence of non-uniform magnetic fields [J]. Combustion and Flame, 2003, 133(3): 345–357. DOI: 10.1016/S0010-2180(03)00021-X.
    [7] ZHOU S Y, GAO J C, LUO Z M, et al. Role of ferromagnetic metal velvet and DC magnetic field on the explosion of a C3H8/air mixture-effect on reaction mechanism [J]. Energy, 2022, 239: 122218. DOI: 10.1016/j.energy.2021.122218.
    [8] RAMNATH V, LYONS K M. The potential of simple, low-cost permanent magnets for flame manipulation in flow fields [J]. Aeronautics and Aerospace Open Access Journal, 2018, 2(1): 1–5. DOI: 10.15406/aaoaj.2018.02.00022.
    [9] PANDEY P K, KUMAR M, KUMAR V, et al. Measurement of temperature and temperature profile of wick stabilized micro diffusion flame under the effect of magnetic field using digital speckle pattern interferometry [J]. Optical Engineering, 2017, 56(1): 014106. DOI: 10.1117/1.OE.56.1.014106.
    [10] AGARWAL S, KUMAR V, SHAKHER C. Temperature measurement of wick stabilized micro diffusion flame under the influence of magnetic field using digital holographic interferometry [J]. Optics and Lasers in Engineering, 2018, 102: 161–169. DOI: 10.1016/j.optlaseng.2017.10.019.
    [11] 朱秉森. 磁场对层流预混火焰及氮氧化物生成特性的影响 [D]. 包头: 内蒙古科技大学, 2014.

    ZHU B S. Effect of magnetic field on premixed laminar flame and generation characteristics of nitrogen oxide [D]. Baotou: Inner Mongolia University of Science & Technology, 2014.
    [12] KAJIMOTO T, YAMADA E, SHINODA M, et al. Analysis of flame structure by isotope shift-planar laser induced fluorescence spectrometry of trace OH and OD radicals [J]. Microchemical Journal, 2013, 106: 334–339. DOI: 10.1016/j.microc.2012.09.004.
    [13] YAMADA E, SHINODA M, YAMASHITA H, et al. Experimental and numerical analyses of magnetic effect on OH radical distribution in a hydrogen-oxygen diffusion flame [J]. Combustion and Flame, 2003, 135(4): 365–379. DOI: 10.1016/j.combustflame.2003.08.005.
    [14] 王骞. 磁场条件下燃烧机理的研究 [D]. 武汉: 华中科技大学, 2012.

    WANG Q. An investigation on combustion mechanism under the condition of magnetic fields [D]. Wuhan: Huazhong University of Science and Technology, 2012.
    [15] 高建村, 王乐, 胡守涛, 等. 不同磁性金属丝对丙烷爆炸反应抑制机理研究 [J]. 中国安全生产科学技术, 2020, 16(7): 125–130. DOI: 10.11731/j.issn.1673-193x.2020.07.020.

    GAO J C, WANG L, HU S T, et al. Study on inhibition mechanism of different magnetic metal wires on propane explosion [J]. Journal of Safety Science and Technology, 2020, 16(7): 125–130. DOI: 10.11731/j.issn.1673-193x.2020.07.020.
    [16] YANG X G, HU S T, WANG L, et al. Effect of magnetic field on dynamics of 5% propane/air premixed gases [J]. Journal of Physics: Conference Series, 2021, 1948(1): 012133. DOI: 10.1088/1742-6596/1948/1/012133.
    [17] 高建村, 杨喜港, 胡守涛, 等. 外加磁场对乙炔气体爆炸反应影响研究 [J]. 爆炸与冲击, 2022, 42(7): 075401. DOI: 10.11883/bzycj-2021-0417.

    GAO J C, YANG X G, HU S T, et al. Effect of external magnetic field on explosion reaction of acetylene gas [J]. Explosion and Shock Waves, 2022, 42(7): 075401. DOI: 10.11883/bzycj-2021-0417.
    [18] WANG L, GAO J C, ZHOU S Y, et al. A product analysis-based study on the mechanism of inflammable gas explosion suppression [J]. Journal of Loss Prevention in the Process Industries, 2021, 69: 104311. DOI: 10.1016/j.jlp.2020.104311.
    [19] 《空气和废气监测分析方法》编委会. 空气和废气监测分析方法 [M]. 4版. 北京: 中国环境出版社, 2003: 521–550.
    [20] WANG H, YOU X Q, AMEYA V, et al. USC mech version Ⅱ: High-temperature combustion reaction model of H2/CO/C1-C4 compounds [EB/OL]. (2007-05)[2022-06-13]. http://ignis.usc.edu/USC_Mech_II.htm.
    [21] 范康年. 谱学导论 [M]. 2版. 北京: 高等教育出版社, 2011: 112–122.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  462
  • HTML全文浏览量:  126
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-18
  • 修回日期:  2022-10-21
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2023-01-05

目录

    /

    返回文章
    返回