Failure law of shallow buried reinforced concrete arch structure under secondary explosion of conventional weapons
-
摘要: 为研究常规武器二次爆炸作用下土中浅埋拱结构的破坏规律,对土中浅埋钢筋混凝土直墙拱结构进行爆炸试验和数值模拟。试验对结构模型设置多个缩比工况,同时,利用LS-DYNA对3组工况进行数值模拟。通过对比土中测点压力、结构测点速度和结构挠度等数据,发现模拟结果与试验结果基本一致并拓展了二次爆炸的数值模拟工况。结果表明:比例爆距设置在0.4~0.6 m/kg1/3,以保证结构以整体破坏为主。综合结构毁伤宏观描述和结构最大挠跨比,对整体作用下结构的毁伤等级进行划分。通过讨论结构的初始毁伤及不同爆炸顺序时钢筋混凝土直墙拱结构的破坏规律,结构受爆炸作用发生开裂、弯曲等破坏时,部分混凝土因开裂或进入塑性而退出工作,从而导致结构的刚度发生改变;结构最终毁伤程度受打击顺序影响,初次爆炸对结构最终损伤影响比重较大。Abstract: The failure law of shallow buried reinforced concrete straight wall arch structure in soil under secondary explosion of conventional weapons was studied by explosion test and numerical simulation. Test structure adopts scale model based on similarity principle. Three groups of six shots were set up in the test. LS-DYNA is used to simulate the three groups of working conditions. By comparing the pressure of the measuring point in the soil, the speed of the structural measuring point, the structural deflection and other data, it is found that the simulation results are basically consistent with the experimental results. After comparing the numerical simulation results with the test, the numerical simulation conditions of the secondary explosion are expanded. When the comparison verifies that the numerical simulation is consistent with the experimental results, the secondary explosion conditions under the action of conventional weapons are simulated to study the dynamic response of structures under repeated impacts. Through calculation, it is found that when the proportional distance is set between 0.4-0.6 m/kg1/3, the damage of the structure is mainly caused by the overall damage. Combined with the macroscopic description of structural damage and the maximum deflection span ratio, the damage grade of the structure under the overall effect is divided. By discussing the initial damage of the structure and the failure law of reinforced concrete straight wall arch structure under different explosion sequences, the following conclusions are obtained: when the structure is damaged by explosion, such as cracking and bending, some concrete is out of work due to cracking or entering plasticity, resulting in the change of stiffness of the structure. The final damage degree of the structure is affected by the strike sequence, and the effect of initial explosion on the final damage of structure is greater than that of secondary explosion.
-
Key words:
- shallow buried tunnel /
- reinforced concrete structure /
- secondary explosion /
- failure law
-
表 1 试验工况设置
Table 1. Setting of test conditions
工况 爆炸距离/m 装药当量/kg 比例爆距/(m∙kg−1/3) T1-0 1.0 5.0 0.585 T1-1 0.8 5.0 0.468 T2-0 0.8 5.0 0.468 T2-1 0.8 7.5 0.409 T3-0 0.8 7.5 0.409 T3-1 0.8 7.5 0.409 密度/
(kg∙m−3)杨氏模量/
GPa剪切模量/
GPa抗压强度/
MPa最小残余
损伤应变2440 32.5 16.7 40 0.01 表 3 TNT材料关键参数
Table 3. Key parameters of TNT material
密度/( kg∙m−3) 爆速/(m∙s−1) pCJ/GPa E0/GPa R1 R2 ω A/GPa B/GPa 1600 6300 28.5 7 4.15 0.95 0.3 3730 3.75 表 4 数值模拟初次打击局部震塌计算
Table 4. Numerical simulation of local collapse in initial shock
试验 工况
(距离-当量)震塌系数KZ 毁伤描述 S1-0 1.0 m-5.0 kg 0.371 无明显震塌现象 S2-0 0.8 m-5.0 kg 0.319 小范围内混凝土脱落 S3-0 1.0 m-7.5 kg 0.330 小范围内混凝土脱落 S4-0 0.8 m-7.5 kg 0.284 较大范围的混凝土层裂 表 5 初次打击数值模拟计算结果
Table 5. Numerical simulation results of initial explosion
试验 工况
(距离-当量)自振周期/ms 刚度比 挠跨比/% 毁伤程度 S1-0 1.0 m-5.0 kg 6.03 0.990 0.395 轻度毁伤 S2-0 0.8 m-5.0 kg 7.00 0.735 0.772 中度毁伤 S3-0 1.0 m-7.5 kg 6.95 0.745 0.797 中度毁伤 S4-0 0.8 m-7.5 kg 7.24 0.687 1.729 中度毁伤 表 6 二次打击数值模拟计算
Table 6. Numerical simulation of secondary explosion
试验 工况(距离-当量) 拱顶挠度/mm 挠跨比/% 累积挠度/mm 累积挠跨比/% 毁伤等级 S1-1 1.0 m-7.5 kg 7.94 0.827 11.735 1.222 中度毁伤 S1-2 0.8 m-5.0 kg 7.90 0.823 11.695 1.218 中度毁伤 S1-3 1.0 m-5.0 kg 4.70 0.490 8.495 0.885 中度毁伤 S2-1 1.0 m-5.0 kg 5.06 0.527 12.470 1.299 中度毁伤 S2-2 0.8 m-7.5 kg 17.20 1.792 24.610 2.564 重度毁伤 S2-3 0.8 m-5.0 kg 8.53 0.870 15.760 1.642 中度毁伤 S3-1 1.0 m-5.0 kg 4.97 0.518 12.620 1.315 中度毁伤 S3-2 0.8 m-7.5 kg 17.20 1.792 24.850 2.589 重度毁伤 S3-3 1.0 m-7.5 kg 8.09 0.843 15.740 1.640 中度毁伤 S4-1 0.8 m-5.0 kg 22.50 2.344 39.100 4.073 重度毁伤 S4-2 1.0 m-7.5 kg 14.30 1.490 30.900 3.219 重度毁伤 S4-3 0.8 m-7.5 kg — — — — 重度毁伤 表 7 相同工况下不同初始毁伤结构响应对比
Table 7. Responses of different initial damaged structures under the same conditions
试验 工况
(距离-当量)初始刚度比 初始毁伤程度 挠跨比/% S2-0 0.8 m-5.0 kg 1.000 无毁伤 0.772 S1-2 0.8 m-5.0 kg 0.990 轻度毁伤 0.823 S2-3 0.8 m-5.0 kg 0.735 中度毁伤 0.870 S4-1 0.8 m-5.0 kg 0.687 中度毁伤 2.344 表 8 不同起爆次序下结构响应对比
Table 8. Structural response under different initiation sequence
试验 工况顺序(距离-当量) 累积挠跨比/% S2-2 先0.8 m-5.0 kg,后0.8 m-7.5 kg 2.564 S4-1 先0.8 m-7.5 kg,后0.8 m-5.0 kg 4.073 -
[1] 王辉明, 刘飞, 晏麓晖, 等. 接触爆炸荷载对钢筋混凝土梁的局部毁伤效应 [J]. 爆炸与冲击, 2020, 40(12): 121404. DOI: 10.11883/bzycj-2020-0171.WANG H M, LIU F, YAN L H, et al. Local damage effects of reinforced concrete beams under contact explosions [J]. Explosion and Shock Waves, 2020, 40(12): 121404. DOI: 10.11883/bzycj-2020-0171. [2] SHI Y C, HONG H, LI Z X. Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35(11): 1213–1227. DOI: 10.1016/j.ijimpeng.2007.09.001. [3] YAO S J, ZHANG D, CHEN X G, et al. Experimental and numerical study on the dynamic response of RC slabs under blast loading [J]. Engineering Failure Analysis, 2016, 66: 120–129. DOI: 10.1016/j.engfailanal.2016.04.027. [4] 汪维, 张舵, 卢芳云, 等. 钢筋混凝土楼板在爆炸荷载作用下破坏模式和抗爆性能分析 [J]. 兵工学报, 2010, 31(S1): 102–106.WANG W, ZHANG D, LU F Y, et al. Analysis for blast resistance and damage mode of reinforced concrete slab subjected to explosive load [J]. Acta Armamentarii, 2010, 31(S1): 102–106. [5] KIGER S A, DALLRIVA F D, HALL R L. Dynamic skin-friction effects on buried arches [J]. Journal of Structural Engineering, 1989, 115(7): 1768–1781. DOI: 10.1061/(ASCE)0733-9445(1989)115:7(1768). [6] 孙惠香, 许金余, 李庆. 爆炸荷载作用下地下结构破坏模式研究 [J]. 弹箭与制导学报, 2011, 31(5): 89–92, 98.SUN H X, XU J Y, LI Q. The failure mode study of underground structure subjected to blast load [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(5): 89–92, 98. [7] 李秀地, 郑颖人, 徐干成. 爆炸荷载作用下地下结构的震塌破坏模型研究 [J]. 爆破, 2006, 23(1): 6–9. DOI: 10.3963/j.issn.1001-487X.2006.01.002.LI X D, ZHENG Y R, XU G C. Spall model of underground structures under blast loads [J]. Blasting, 2006, 23(1): 6–9. DOI: 10.3963/j.issn.1001-487X.2006.01.002. [8] 李秀地, 郑颖人, 徐干成. 爆炸荷载作用下地下结构的局部层裂分析 [J]. 地下空间与工程学报, 2005, 1(6): 853–855,877. DOI: 10.3969/j.issn.1673-0836.2005.06.010.LI X D, ZHENG Y R, XU G C. Spall response analysis of underground structures under blast loads [J]. Chinese Journal of Underground Space and Engineering, 2005, 1(6): 853–855,877. DOI: 10.3969/j.issn.1673-0836.2005.06.010. [9] 邓春梅, 许金余, 沈刘军. 装药爆炸下地下拱形结构变形及破坏特征分析 [J]. 解放军理工大学学报(自然科学版), 2007(5): 534–537. DOI: 10.7666/j.issn.1009-3443.20070522.DENG C M, XU J Y, SHEN L J. Deformation and damage characteristics analysis of underground arch structure subjected to subsurface blast [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2007(5): 534–537. DOI: 10.7666/j.issn.1009-3443.20070522. [10] 霍庆, 王逸平, 刘光昆, 等. 地下拱形结构侧顶爆炸的破坏模式及影响因素 [J]. 兵工学报, 2021, 42(S1): 105–116.HUO Q, WANG Y P, LIU G K, et al. Failure mode and influencing factors of underground arched structure subjected to side top blast [J]. Acta Armamentarii, 2021, 42(S1): 105–116. [11] 邓国强. 重复打击下防护结构地冲击初步分析[C]//第26届全国结构工程学术会议论文集(第Ⅲ册). 2017: 38−42. [12] 戎志丹, 孙伟, 张云升, 等. 超高性能钢纤维混凝土抗二次接触爆炸性能研究 [J]. 华北水利水电学院学报, 2012, 33(6): 1–4. DOI: 10.19760/j.ncwu.zk.2012.06.001.RONG Z D, SUN W, ZHANG Y S, et al. Study on the characteristics of ultra-high performance steel fiber reinforced concrete under the second explosion [J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2012, 33(6): 1–4. DOI: 10.19760/j.ncwu.zk.2012.06.001. [13] 马林建, 赵岩, 张晓, 等. 二次爆炸荷载作用下钢筋混凝土梁动力响应分析 [J]. 工业建筑, 2011, 41(S1): 145–148. DOI: 10.13204/j.gyjz2011.s1.179.MA L J, ZHAO Y, ZHANG X, et al. Dynamic response analysis of reinforced concrete beams subjected to secondary impulsive loading [J]. Industrial Construction, 2011, 41(S1): 145–148. DOI: 10.13204/j.gyjz2011.s1.179. [14] 马淑娜, 刘新宇, 马林建, 等. 常规武器在土中二次爆炸后对钢筋混凝土梁的动力响应分析[C]//.第2届全国工程安全与防护学术会议论文集. 2010: 401−405. [15] 杨大兴, 马林建, 马淑娜, 等. 常规武器对钢筋混凝土梁二次爆炸效应分析 [J]. 防护工程, 2012(6): 38–41.YANG D X, MA L J, MA S N, et al. An analysis of the damage effects of a second conventional weapon explosion on reinforced concrete beams [J]. Protective Engineering, 2012(6): 38–41. [16] 唐廷, 周健南. 地震后地下受损拱结构的抗爆炸能力研究 [J]. 兵工学报, 2017, 38(9): 1736–1744. DOI: 10.3969/j.issn.1000-1093.2017.09.010.TANG T, ZHOU J N. Study of anti-blasting ability of damaged underground arch structure after earthquake [J]. Acta Armamentarii, 2017, 38(9): 1736–1744. DOI: 10.3969/j.issn.1000-1093.2017.09.010. [17] WANG J. Simulation of landmine explosion using ls-dyna3d software: benchmark work of simulation of explosion in soil and air [R]. Fishermans Bend, Victoria, Australia: DSTO Aeronautical and Maritime Research Laboratory, 2001. [18] YANG G D, WANG G H, LU W B, et al. A SPH-lagrangian-eulerian approach for the simulation of concrete gravity dams under combined effects of penetration and explosion [J]. KSCE Journal of Civil Engineering, 2018(22): 3085–3101. DOI: 10.1007/s12205-017-0610-1. [19] ZHANG Y D, FANG Q, LIU O, et al. Numerical and experimental investigation into plane charge explosion technique [J]. International Journal of Impact Engineering, 2008, 35(10): 1179–1185. DOI: 10.1016/j.ijimpeng.2008.01.009. [20] 孙善政, 卢浩, 李杰, 等. 侵爆作用下混凝土靶破坏效应试验与数值模拟 [J]. 振动与冲击, 2022, 41(1): 206–212. DOI: 10.13465/j.cnki.jvs.2022.01.026.SUN S Z, LU H, LI J, et al. Test and numerical simulation for damage effect of concrete target under penetration and explosion [J]. Journal of Vibration and Shock, 2022, 41(1): 206–212. DOI: 10.13465/j.cnki.jvs.2022.01.026. [21] 马维. 地下管道结构爆振效应和冲击破坏行为实验 [J]. 解放军理工大学学报(自然科学版), 2008, 9(1): 39–46. DOI: 10.7666/j.issn.1009-3443.20080109.MA W. Experimental investigations on effects of blast vibration and behaviors of impacting failure of underground pipeline structures [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2008, 9(1): 39–46. DOI: 10.7666/j.issn.1009-3443.20080109. [22] 钱七虎. 防护结构计算原理[M]. 南京: 中国人民解放军工程兵工程学院, 1981: 73−77.