常规武器二次爆炸作用下浅埋钢筋混凝土拱结构破坏规律

陈昊 卢浩 孙善政 熊自明 岳松林 王德荣

陈昊, 卢浩, 孙善政, 熊自明, 岳松林, 王德荣. 常规武器二次爆炸作用下浅埋钢筋混凝土拱结构破坏规律[J]. 爆炸与冲击, 2023, 43(8): 085104. doi: 10.11883/bzycj-2022-0260
引用本文: 陈昊, 卢浩, 孙善政, 熊自明, 岳松林, 王德荣. 常规武器二次爆炸作用下浅埋钢筋混凝土拱结构破坏规律[J]. 爆炸与冲击, 2023, 43(8): 085104. doi: 10.11883/bzycj-2022-0260
CHEN Hao, LU Hao, SUN Shanzheng, XIONG Ziming, YUE Songlin, WANG Derong. Failure law of shallow buried reinforced concrete arch structure under secondary explosion of conventional weapons[J]. Explosion And Shock Waves, 2023, 43(8): 085104. doi: 10.11883/bzycj-2022-0260
Citation: CHEN Hao, LU Hao, SUN Shanzheng, XIONG Ziming, YUE Songlin, WANG Derong. Failure law of shallow buried reinforced concrete arch structure under secondary explosion of conventional weapons[J]. Explosion And Shock Waves, 2023, 43(8): 085104. doi: 10.11883/bzycj-2022-0260

常规武器二次爆炸作用下浅埋钢筋混凝土拱结构破坏规律

doi: 10.11883/bzycj-2022-0260
基金项目: 国家自然科学基金(51808552)
详细信息
    作者简介:

    陈 昊(1998- ),男,博士研究生,1084456589@qq.com

    通讯作者:

    卢 浩(1987- ),男,博士,副教授,lh829829@163.com

  • 中图分类号: O383

Failure law of shallow buried reinforced concrete arch structure under secondary explosion of conventional weapons

  • 摘要: 为研究常规武器二次爆炸作用下土中浅埋拱结构的破坏规律,对土中浅埋钢筋混凝土直墙拱结构进行爆炸试验和数值模拟。试验对结构模型设置多个缩比工况,同时,利用LS-DYNA对3组工况进行数值模拟。通过对比土中测点压力、结构测点速度和结构挠度等数据,发现模拟结果与试验结果基本一致并拓展了二次爆炸的数值模拟工况。结果表明:比例爆距设置在0.4~0.6 m/kg1/3,以保证结构以整体破坏为主。综合结构毁伤宏观描述和结构最大挠跨比,对整体作用下结构的毁伤等级进行划分。通过讨论结构的初始毁伤及不同爆炸顺序时钢筋混凝土直墙拱结构的破坏规律,结构受爆炸作用发生开裂、弯曲等破坏时,部分混凝土因开裂或进入塑性而退出工作,从而导致结构的刚度发生改变;结构最终毁伤程度受打击顺序影响,初次爆炸对结构最终损伤影响比重较大。
  • 图  1  直墙拱模型尺寸及钢筋布置(单位: mm)

    Figure  1.  Size of structure and layout of steel bars (unit: mm)

    图  2  直墙拱模型现场

    Figure  2.  Straight wall arch model site

    图  3  装药及采集手段布置

    Figure  3.  Layout of charge and acquisition means

    图  4  试验开展流程

    Figure  4.  Test development process

    图  5  模型结构特征毁伤形态

    Figure  5.  Damage forms of model structural characteristics

    图  6  几种典型混凝土拱结构破坏模式

    Figure  6.  Several typical failure modes of concrete arch structure

    图  7  有限元模型及材料示意图

    Figure  7.  Finite element model and material description

    图  8  数值模拟与试验的结构破坏形态对比

    Figure  8.  Comparison of structural failure modes in numerical simulation and test

    图  9  测量点布置示意图(单位:mm)

    Figure  9.  Mapping of measuring points (unit: mm)

    图  10  数值模拟与试验的测点压力、速度时程曲线对比

    Figure  10.  Comparison of pressure and velocity time-history curves at measuring points between simulation and test

    图  11  数值模拟毁伤等级划分示意

    Figure  11.  Numerical simulation of damage grade division

    图  12  二次打击工况结构的初始损伤特征

    Figure  12.  Initial damage characteristics of structures under secondary explosion

    表  1  试验工况设置

    Table  1.   Setting of test conditions

    工况爆炸距离/m装药当量/kg比例爆距/(m∙kg−1/3
    T1-01.05.00.585
    T1-10.85.00.468
    T2-00.85.00.468
    T2-10.87.50.409
    T3-00.87.50.409
    T3-10.87.50.409
    下载: 导出CSV

    表  2  混凝土RHT材料关键参数[18]

    Table  2.   Key parameters of concrete RHT material[18]

    密度/
    (kg∙m−3
    杨氏模量/
    GPa
    剪切模量/
    GPa
    抗压强度/
    MPa
    最小残余
    损伤应变
    244032.516.7400.01
    下载: 导出CSV

    表  3  TNT材料关键参数

    Table  3.   Key parameters of TNT material

    密度/( kg∙m−3)爆速/(m∙s−1)pCJ/GPaE0/GPaR1R2ωA/GPaB/GPa
    1600630028.574.150.950.337303.75
    下载: 导出CSV

    表  4  数值模拟初次打击局部震塌计算

    Table  4.   Numerical simulation of local collapse in initial shock

    试验工况
    (距离-当量)
    震塌系数KZ毁伤描述
    S1-01.0 m-5.0 kg0.371无明显震塌现象
    S2-00.8 m-5.0 kg0.319小范围内混凝土脱落
    S3-01.0 m-7.5 kg0.330小范围内混凝土脱落
    S4-00.8 m-7.5 kg0.284较大范围的混凝土层裂
    下载: 导出CSV

    表  5  初次打击数值模拟计算结果

    Table  5.   Numerical simulation results of initial explosion

    试验工况
    (距离-当量)
    自振周期/ms刚度比挠跨比/%毁伤程度
    S1-01.0 m-5.0 kg6.030.9900.395轻度毁伤
    S2-00.8 m-5.0 kg7.000.7350.772中度毁伤
    S3-01.0 m-7.5 kg6.950.7450.797中度毁伤
    S4-00.8 m-7.5 kg7.240.6871.729中度毁伤
    下载: 导出CSV

    表  6  二次打击数值模拟计算

    Table  6.   Numerical simulation of secondary explosion

    试验工况(距离-当量)拱顶挠度/mm挠跨比/%累积挠度/mm累积挠跨比/%毁伤等级
    S1-11.0 m-7.5 kg7.940.82711.7351.222中度毁伤
    S1-20.8 m-5.0 kg7.900.82311.6951.218中度毁伤
    S1-31.0 m-5.0 kg4.700.4908.4950.885中度毁伤
    S2-11.0 m-5.0 kg5.060.52712.4701.299中度毁伤
    S2-20.8 m-7.5 kg17.201.79224.6102.564重度毁伤
    S2-30.8 m-5.0 kg8.530.87015.7601.642中度毁伤
    S3-11.0 m-5.0 kg4.970.51812.6201.315中度毁伤
    S3-20.8 m-7.5 kg17.201.79224.8502.589重度毁伤
    S3-31.0 m-7.5 kg8.090.84315.7401.640中度毁伤
    S4-10.8 m-5.0 kg22.502.34439.1004.073重度毁伤
    S4-21.0 m-7.5 kg14.301.49030.9003.219重度毁伤
    S4-30.8 m-7.5 kg重度毁伤
    下载: 导出CSV

    表  7  相同工况下不同初始毁伤结构响应对比

    Table  7.   Responses of different initial damaged structures under the same conditions

    试验工况
    (距离-当量)
    初始刚度比初始毁伤程度挠跨比/%
    S2-00.8 m-5.0 kg1.000无毁伤0.772
    S1-20.8 m-5.0 kg0.990轻度毁伤0.823
    S2-30.8 m-5.0 kg0.735中度毁伤0.870
    S4-10.8 m-5.0 kg0.687中度毁伤2.344
    下载: 导出CSV

    表  8  不同起爆次序下结构响应对比

    Table  8.   Structural response under different initiation sequence

    试验工况顺序(距离-当量)累积挠跨比/%
    S2-2先0.8 m-5.0 kg,后0.8 m-7.5 kg2.564
    S4-1先0.8 m-7.5 kg,后0.8 m-5.0 kg4.073
    下载: 导出CSV
  • [1] 王辉明, 刘飞, 晏麓晖, 等. 接触爆炸荷载对钢筋混凝土梁的局部毁伤效应 [J]. 爆炸与冲击, 2020, 40(12): 121404. DOI: 10.11883/bzycj-2020-0171.

    WANG H M, LIU F, YAN L H, et al. Local damage effects of reinforced concrete beams under contact explosions [J]. Explosion and Shock Waves, 2020, 40(12): 121404. DOI: 10.11883/bzycj-2020-0171.
    [2] SHI Y C, HONG H, LI Z X. Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35(11): 1213–1227. DOI: 10.1016/j.ijimpeng.2007.09.001.
    [3] YAO S J, ZHANG D, CHEN X G, et al. Experimental and numerical study on the dynamic response of RC slabs under blast loading [J]. Engineering Failure Analysis, 2016, 66: 120–129. DOI: 10.1016/j.engfailanal.2016.04.027.
    [4] 汪维, 张舵, 卢芳云, 等. 钢筋混凝土楼板在爆炸荷载作用下破坏模式和抗爆性能分析 [J]. 兵工学报, 2010, 31(S1): 102–106.

    WANG W, ZHANG D, LU F Y, et al. Analysis for blast resistance and damage mode of reinforced concrete slab subjected to explosive load [J]. Acta Armamentarii, 2010, 31(S1): 102–106.
    [5] KIGER S A, DALLRIVA F D, HALL R L. Dynamic skin-friction effects on buried arches [J]. Journal of Structural Engineering, 1989, 115(7): 1768–1781. DOI: 10.1061/(ASCE)0733-9445(1989)115:7(1768).
    [6] 孙惠香, 许金余, 李庆. 爆炸荷载作用下地下结构破坏模式研究 [J]. 弹箭与制导学报, 2011, 31(5): 89–92, 98.

    SUN H X, XU J Y, LI Q. The failure mode study of underground structure subjected to blast load [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(5): 89–92, 98.
    [7] 李秀地, 郑颖人, 徐干成. 爆炸荷载作用下地下结构的震塌破坏模型研究 [J]. 爆破, 2006, 23(1): 6–9. DOI: 10.3963/j.issn.1001-487X.2006.01.002.

    LI X D, ZHENG Y R, XU G C. Spall model of underground structures under blast loads [J]. Blasting, 2006, 23(1): 6–9. DOI: 10.3963/j.issn.1001-487X.2006.01.002.
    [8] 李秀地, 郑颖人, 徐干成. 爆炸荷载作用下地下结构的局部层裂分析 [J]. 地下空间与工程学报, 2005, 1(6): 853–855,877. DOI: 10.3969/j.issn.1673-0836.2005.06.010.

    LI X D, ZHENG Y R, XU G C. Spall response analysis of underground structures under blast loads [J]. Chinese Journal of Underground Space and Engineering, 2005, 1(6): 853–855,877. DOI: 10.3969/j.issn.1673-0836.2005.06.010.
    [9] 邓春梅, 许金余, 沈刘军. 装药爆炸下地下拱形结构变形及破坏特征分析 [J]. 解放军理工大学学报(自然科学版), 2007(5): 534–537. DOI: 10.7666/j.issn.1009-3443.20070522.

    DENG C M, XU J Y, SHEN L J. Deformation and damage characteristics analysis of underground arch structure subjected to subsurface blast [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2007(5): 534–537. DOI: 10.7666/j.issn.1009-3443.20070522.
    [10] 霍庆, 王逸平, 刘光昆, 等. 地下拱形结构侧顶爆炸的破坏模式及影响因素 [J]. 兵工学报, 2021, 42(S1): 105–116.

    HUO Q, WANG Y P, LIU G K, et al. Failure mode and influencing factors of underground arched structure subjected to side top blast [J]. Acta Armamentarii, 2021, 42(S1): 105–116.
    [11] 邓国强. 重复打击下防护结构地冲击初步分析[C]//第26届全国结构工程学术会议论文集(第Ⅲ册). 2017: 38−42.
    [12] 戎志丹, 孙伟, 张云升, 等. 超高性能钢纤维混凝土抗二次接触爆炸性能研究 [J]. 华北水利水电学院学报, 2012, 33(6): 1–4. DOI: 10.19760/j.ncwu.zk.2012.06.001.

    RONG Z D, SUN W, ZHANG Y S, et al. Study on the characteristics of ultra-high performance steel fiber reinforced concrete under the second explosion [J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2012, 33(6): 1–4. DOI: 10.19760/j.ncwu.zk.2012.06.001.
    [13] 马林建, 赵岩, 张晓, 等. 二次爆炸荷载作用下钢筋混凝土梁动力响应分析 [J]. 工业建筑, 2011, 41(S1): 145–148. DOI: 10.13204/j.gyjz2011.s1.179.

    MA L J, ZHAO Y, ZHANG X, et al. Dynamic response analysis of reinforced concrete beams subjected to secondary impulsive loading [J]. Industrial Construction, 2011, 41(S1): 145–148. DOI: 10.13204/j.gyjz2011.s1.179.
    [14] 马淑娜, 刘新宇, 马林建, 等. 常规武器在土中二次爆炸后对钢筋混凝土梁的动力响应分析[C]//.第2届全国工程安全与防护学术会议论文集. 2010: 401−405.
    [15] 杨大兴, 马林建, 马淑娜, 等. 常规武器对钢筋混凝土梁二次爆炸效应分析 [J]. 防护工程, 2012(6): 38–41.

    YANG D X, MA L J, MA S N, et al. An analysis of the damage effects of a second conventional weapon explosion on reinforced concrete beams [J]. Protective Engineering, 2012(6): 38–41.
    [16] 唐廷, 周健南. 地震后地下受损拱结构的抗爆炸能力研究 [J]. 兵工学报, 2017, 38(9): 1736–1744. DOI: 10.3969/j.issn.1000-1093.2017.09.010.

    TANG T, ZHOU J N. Study of anti-blasting ability of damaged underground arch structure after earthquake [J]. Acta Armamentarii, 2017, 38(9): 1736–1744. DOI: 10.3969/j.issn.1000-1093.2017.09.010.
    [17] WANG J. Simulation of landmine explosion using ls-dyna3d software: benchmark work of simulation of explosion in soil and air [R]. Fishermans Bend, Victoria, Australia: DSTO Aeronautical and Maritime Research Laboratory, 2001.
    [18] YANG G D, WANG G H, LU W B, et al. A SPH-lagrangian-eulerian approach for the simulation of concrete gravity dams under combined effects of penetration and explosion [J]. KSCE Journal of Civil Engineering, 2018(22): 3085–3101. DOI: 10.1007/s12205-017-0610-1.
    [19] ZHANG Y D, FANG Q, LIU O, et al. Numerical and experimental investigation into plane charge explosion technique [J]. International Journal of Impact Engineering, 2008, 35(10): 1179–1185. DOI: 10.1016/j.ijimpeng.2008.01.009.
    [20] 孙善政, 卢浩, 李杰, 等. 侵爆作用下混凝土靶破坏效应试验与数值模拟 [J]. 振动与冲击, 2022, 41(1): 206–212. DOI: 10.13465/j.cnki.jvs.2022.01.026.

    SUN S Z, LU H, LI J, et al. Test and numerical simulation for damage effect of concrete target under penetration and explosion [J]. Journal of Vibration and Shock, 2022, 41(1): 206–212. DOI: 10.13465/j.cnki.jvs.2022.01.026.
    [21] 马维. 地下管道结构爆振效应和冲击破坏行为实验 [J]. 解放军理工大学学报(自然科学版), 2008, 9(1): 39–46. DOI: 10.7666/j.issn.1009-3443.20080109.

    MA W. Experimental investigations on effects of blast vibration and behaviors of impacting failure of underground pipeline structures [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2008, 9(1): 39–46. DOI: 10.7666/j.issn.1009-3443.20080109.
    [22] 钱七虎. 防护结构计算原理[M]. 南京: 中国人民解放军工程兵工程学院, 1981: 73−77.
  • 加载中
图(12) / 表(8)
计量
  • 文章访问数:  452
  • HTML全文浏览量:  88
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-15
  • 修回日期:  2022-09-14
  • 网络出版日期:  2022-10-13
  • 刊出日期:  2023-08-31

目录

    /

    返回文章
    返回