Experimental study on effects of nozzles on gas bubble shapes and pressure characteristics of underwater detonation
-
摘要: 针对具有不同类型喷管的爆轰管在水下爆轰中形成的燃气射流问题,搭建了爆轰实验平台,研究了单次爆轰过程中尾部喷管对水下气泡形态与压力特征的影响。采用数字粒子图像测速技术对高速摄影机拍摄得到的气泡脉动图片进行流场可视化分析,得到各喷管工况下的气泡速度场。为了确认爆轰管内是否形成稳定爆轰波,并观察爆轰波在气液两相界面上的透反射特性,爆轰管尾部安装有2个动态压力传感器,同时在距离喷管一定距离处设置一个水下爆炸传感器,以监测水中传播的压力波。结果表明:扩张喷管工况下的气泡脉动过程与直喷管工况基本一致,但扩张喷管提高了燃气射流速度,气泡膨胀体积更大;因为燃气射流的持续性,收敛喷管工况下的气泡脉动过程具有明显差异,气泡膨胀体积较小,但气泡二次脉动时长相较于一次脉动时长衰减更小;扩张喷管提高了气泡脉动强度,扩张喷管工况下的气泡脉动压力与透射冲击波压力远大于直喷管工况下的气泡脉动压力与透射冲击波压力;收敛喷管工况下的气泡脉动压力与透射冲击波压力都较小,但收敛喷管燃气射流的持续性减缓了气泡脉动压力的衰减速度。相比于直喷管,扩张喷管工况下的气泡脉动时间、气泡脉动压力与透射冲击波压力都更大。收敛喷管工况下的气泡脉动持续时间较短,并且收敛喷管对透射冲击波压力和气泡脉动压力均具有明显的抑制作用。Abstract: A detonation experimental system was established to explore the characteristics of underwater detonation gas jets from the detonation tubes with different types of nozzles. The effects of different types of nozzles on underwater bubble shapes and pressure characteristics during detonation were experimentally studied. The digital particle image velocimetry was used to visualize the bubble pulsation pictures captured by a high-speed camera, and the bubble velocity fields in the different nozzle cases were obtained. Two dynamic pressure sensors were installed at the end of the detonation tube to confirm whether the stable detonation wave was formed, and to observe the transmission and reflection characteristics of the detonation wave on the gas-liquid two-phase interface, respectively. An underwater explosion sensor was installed at a certain distance from the nozzle to measure the underwater pressure wave. The results show that the bubble pulsation process in the divergent nozzle case is basically the same as that in the case of the straight nozzle, but the divergent nozzle improves the gas jet velocity and increases the bubble volume of the first bubble pulsation. The combined effect of the convergent nozzle and its reflected shock wave reduces the injection speed of the detonation gas. Because of the continuity of the gas jet, the bubble pulsation process in the convergent nozzle case is obviously different. The maximum bubble volume in the convergent nozzle case is smaller, but the attenuation of the second bubble pulsation duration is smaller than that of the first pulsation duration. The divergent nozzle increases the gas velocity and kinetic energy, which enhances the bubble pulsation intensity, the bubble pulsation pressure and transmitted shock wave pressure in the divergent nozzle case are much higher than those in the straight nozzle case. The bubble pulsation pressure and the transmitted shock wave pressure in the convergent nozzle case are both low, but the continuity of the convergent nozzle gas jet retards the attenuation speed of the bubble pulsation pressure. Compared with the straight nozzle, the bubble pulsation time in the divergent nozzle case is longer, the bubble pulsation pressure and transmitted shock wave pressure are higher. The duration of the bubble pulsation in the convergent nozzle case is shorter, and the convergent nozzle can obviously inhibit the transmitted shock wave pressure and the bubble pulsation pressure.
-
Key words:
- nozzle /
- underwater detonation /
- bubble pulsation /
- bubble shape /
- underwater pressure
-
表 1 直喷管和扩张喷管的气泡脉动压力极值和脉动时间
Table 1. Pressure extrema and bubble pulsation time of straight and divergent nozzles
喷管 pA/kPa pB/kPa pC/kPa t1/ms t2/ms 直喷管 23.50 12.38 2.54 28.70 20.63 扩张喷管 31.41 13.41 7.52 31.60 21.48 -
[1] ROSATO D A, THORNTON M, SOSA J, et al. Stabilized detonation for hypersonic propulsion [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(20): e2102244118. DOI: 10.1073/pnas.2102244118. [2] 潘振华, 范宝春, 归明月, 等. 流动系统中爆轰波传播特性的数值模拟 [J]. 爆炸与冲击, 2010, 30(6): 593–597. DOI: 10.11883/1001-1455(2010)06-0593-05.PAN Z H, FAN B C, GUI M Y, et al. Numerical simulation of detonation wave propagation in a flow system [J]. Explosion and Shock Waves, 2010, 30(6): 593–597. DOI: 10.11883/1001-1455(2010)06-0593-05. [3] 王兵, 谢峤峰, 闻浩诚, 等. 爆震发动机研究进展 [J]. 推进技术, 2021, 42(4): 721–737. DOI: 10.13675/j.cnki.tjjs.210109.WANG B, XIE Q F, WEN H C, et al. Research progress of detonation engines [J]. Journal of Propulsion Technology, 2021, 42(4): 721–737. DOI: 10.13675/j.cnki.tjjs.210109. [4] 张春, 郁伟, 王宝寿. 水下超声速燃气射流的初期流场特性研究 [J]. 兵工学报, 2018, 39(5): 961–968. DOI: 10.3969/j.issn.1000-1093.2018.05.016.ZHANG C, YU W, WANG B S. Research on the initial flow field characteristics of underwater supersonic gas jets [J]. Acta Armamentarii, 2018, 39(5): 961–968. DOI: 10.3969/j.issn.1000-1093.2018.05.016. [5] 王乐勤, 郝宗睿, 吴大转. 水下气体射流初期流场的数值研究 [J]. 工程热物理学报, 2009, 30(7): 1132–1135. DOI: 10.3321/j.issn:0253-231X.2009.07.014.WANG L Q, HAO Z R, WU D Z. Numerical simulation of initial flow field of underwater gas jet [J]. Journal of Engineering Thermophysics, 2009, 30(7): 1132–1135. DOI: 10.3321/j.issn:0253-231X.2009.07.014. [6] 张焕好, 郭则庆, 王瑞琦, 等. 水下超声速气体射流的初始流动特性研究 [J]. 振动与冲击, 2019, 38(6): 88–93; 131. DOI: 10.13465/j.cnki.jvs.2019.06.013.ZHANG H H, GUO Z Q, WANG R Q, et al. Initial flow characteristics of an underwater supersonic gas jet [J]. Journal of Vibration and Shock, 2019, 38(6): 88–93; 131. DOI: 10.13465/j.cnki.jvs.2019.06.013. [7] ZHANG Q B, FAN W, WANG K, et al. Impact of nozzles on a valveless pulse detonation rocket engine without the purge process [J]. Applied Thermal Engineering, 2016, 100: 1161–1168. DOI: 10.1016/j.applthermaleng.2016.02.135. [8] 陈焕龙, 王柠, 刘华坪, 等. 不同发射深度下喷管燃气射流特性研究 [J]. 水动力学研究与进展: A辑, 2012, 27(6): 659–666. DOI: 10.3969/j.issn1000-4874.2012.06.005.CHEN H L, WANG N, LIU H P, et al. Investigation of nozzle gas jet characteristics with different launch depth underwater [J]. Chinese Journal of Hydrodynamics, 2012, 27(6): 659–666. DOI: 10.3969/j.issn1000-4874.2012.06.005. [9] FROLOV S M, AVDEEV K A, AKSENOV V S, et al. Pulsed detonation hydroramjet: simulations and experiments [J]. Shock Waves, 2020, 30(3): 221–234. DOI: 10.1007/s00193-019-00906-2. [10] FROLOV S M, AVDEEV K A, AKSENOV V S, et al. Experimental and computational studies of shock wave-to-bubbly water momentum transfer [J]. International Journal of Multiphase Flow, 2017, 92: 20–38. DOI: 10.1016/j.ijmultiphaseflow.2017.01.016. [11] LIU W, LI N, WENG C S, et al. Bubble dynamics and pressure field characteristics of underwater detonation gas jet generated by a detonation tube [J]. Physics of Fluids, 2021, 33(2): 023302. DOI: 10.1063/5.0029729. [12] LIU W, LI N, HUANG X L, et al. Experimental study of underwater pulse detonation gas jets: bubble velocity field and time-frequency characteristics of pressure field [J]. Physics of Fluids, 2021, 33(8): 083324. DOI: 10.1063/5.0060686. [13] 侯子伟, 翁春生, 贾芳, 等. 水下爆轰燃气泡形态与激波传播过程研究 [J]. 推进技术, 2021, 42(4): 755–764. DOI: 10.13675/j.cnki.tjjs.200390.HOU Z W, WENG C S, JIA F, et al. Gas bubble shape and shock wave propagation process of underwater detonation [J]. Journal of Propulsion Technology, 2021, 42(4): 755–764. DOI: 10.13675/j.cnki.tjjs.200390. [14] HOU Z W, LI N, HUANG X L, et al. Experimental study on pressure evolution of detonation waves penetrating into water [J]. Physics of Fluids, 2022, 34(7): 076110. DOI: 10.1063/5.0100446. [15] 李旭东, 王春, 姜宗林. 喷管对脉冲爆轰发动机性能的影响 [J]. 力学学报, 2011, 43(1): 1–10. DOI: 10.6052/0459-1879-2011-1-lxxb2009-754.LI X D, WANG C, JIANG Z L. Nozzle effects on performance of pulse detonation engines [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 1–10. DOI: 10.6052/0459-1879-2011-1-lxxb2009-754. [16] YUNGSTER S. Analysis of nozzle and ejector effects on pulse detonation engine performance [C]//Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA: AIAA, 2003: 1316. DOI: 10.2514/6.2003-1316. [17] 范玮, 严传俊, 李强, 等. 脉冲爆震发动机尾喷管的实验 [J]. 航空动力学报, 2007, 22(6): 869–872. DOI: 10.3969/j.issn.1000-8055.2007.06.004.FAN W, YAN C J, LI Q, et al. Experimental investigation on pulse detonation engine nozzles [J]. Journal of Aerospace Power, 2007, 22(6): 869–872. DOI: 10.3969/j.issn.1000-8055.2007.06.004. [18] 汤龙生, 刘宇, 吴智锋, 等. 水下超声速燃气射流气泡的生长及压力波传播特性实验研究 [J]. 推进技术, 2011, 32(3): 417–420. DOI: 10.13675/j.cnki.tjjs.2011.03.002.TANG L S, LIU Y, WU Z F, et al. Experimental study on characteristics of bubble growth and pressure wave propagation by supersonic gas jets under water [J]. Journal of Propulsion Technology, 2011, 32(3): 417–420. DOI: 10.13675/j.cnki.tjjs.2011.03.002. [19] LINCK M, GUPTA A, BOURHIS G, et al. Combustion characteristics of pressurized swirling spray flame and unsteady two-phase exhaust jet [C]//Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA: AIAA, 2006: 377. DOI: 10.2514/6.2006-377. [20] 唐嘉宁, 刘向阳, 李世鹏, 等. 水下固体火箭发动机推力特性研究 [J]. 导弹与航天运载技术, 2012(5): 15–21. DOI: 10.3969/j.issn.1006-2793.2012.03.008.TANG J N, LIU X Y, LI S P, et al. Study on the thrust characteristics of the underwater solid rocket motor [J]. Missiles and Space Vehicles, 2012(5): 15–21. DOI: 10.3969/j.issn.1006-2793.2012.03.008. [21] TANG J N, WANG N F, SHYY W. Flow structures of gaseous jets injected into water for underwater propulsion [J]. Acta Mechanica Sinica, 2011, 27(4): 461–472. DOI: 10.1007/s10409-011-0474-4. [22] 王利利, 刘影, 李达钦, 等. 固体火箭发动机水下超音速射流数值研究 [J]. 兵工学报, 2019, 40(6): 1161–1170. DOI: 10.3969/j.issn.1000-1093.2019.06.006.WANG L L, LIU Y, LI D Q, et al. Numerical study of underwater supersonic gas jets for solid rocket engine [J]. Acta Armamentarii, 2019, 40(6): 1161–1170. DOI: 10.3969/j.issn.1000-1093.2019.06.006. [23] 曹嘉怡, 鲁传敬, 李杰, 等. 水下超声速燃气射流动力学特性研究 [J]. 水动力学研究与进展:A辑, 2009, 24(5): 575–582. DOI: 10.16076/j.cnki.cjhd.2009.05.003.CAO J Y, LU C J, LI J, et al. Research on dynamic characteristics of underwater superasonic gas jets [J]. Journal of Hydrodynamics, 2009, 24(5): 575–582. DOI: 10.16076/j.cnki.cjhd.2009.05.003. [24] GONG Z X, LU C J, LI J, et al. The gas jet behavior in submerged Laval nozzle flow [J]. Journal of Hydrodynamics, Ser. B, 2017, 29(6): 1035–1043. DOI: 10.1016/S1001-6058(16)60817-X. [25] BLOCH G, KUCZATY J, SATTELMAYER T. Application of high-speed digital holographic interferometry for the analysis of temperature distributions and velocity fields in subcooled flow boiling [J]. Experiments in Fluids, 2014, 55(2): 1678. DOI: 10.1007/s00348-014-1678-8. [26] GORDON S, MCBRIDE B J. Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: analysis: NASA 1311 [R]. Washington, USA: National Aeronautics and Space Administration, 1994: 39–40.