铆接油箱的水锤毁伤效应

张景飞 贾豪博 任柯融 卿华 郭攀 杜晓伟 陈荣 卢芳云

张景飞, 贾豪博, 任柯融, 卿华, 郭攀, 杜晓伟, 陈荣, 卢芳云. 铆接油箱的水锤毁伤效应[J]. 爆炸与冲击, 2023, 43(7): 073301. doi: 10.11883/bzycj-2022-0275
引用本文: 张景飞, 贾豪博, 任柯融, 卿华, 郭攀, 杜晓伟, 陈荣, 卢芳云. 铆接油箱的水锤毁伤效应[J]. 爆炸与冲击, 2023, 43(7): 073301. doi: 10.11883/bzycj-2022-0275
ZHANG Jingfei, JIA Haobo, REN Kerong, QING Hua, GUO Pan, DU Xiaowei, CHEN Rong, LU Fangyun. Damage of hydrodynamic ram effect to riveted fuel tanks[J]. Explosion And Shock Waves, 2023, 43(7): 073301. doi: 10.11883/bzycj-2022-0275
Citation: ZHANG Jingfei, JIA Haobo, REN Kerong, QING Hua, GUO Pan, DU Xiaowei, CHEN Rong, LU Fangyun. Damage of hydrodynamic ram effect to riveted fuel tanks[J]. Explosion And Shock Waves, 2023, 43(7): 073301. doi: 10.11883/bzycj-2022-0275

铆接油箱的水锤毁伤效应

doi: 10.11883/bzycj-2022-0275
基金项目: 湖南省自然科学基金(2022JJ10058)
详细信息
    作者简介:

    张景飞(1974- ) 男,硕士生导师,副教授,zjf723@163.com

    通讯作者:

    任柯融(1993- ),男,博士研究生,讲师,renkerong@nudt.edu.cn

  • 中图分类号: O385;V221.91

Damage of hydrodynamic ram effect to riveted fuel tanks

  • 摘要: 为了研究高速侵彻体撞击飞机油箱等充液容器所产生的水锤效应对容器结构产生的灾难性破坏,以铆接油箱为对象,通过开展弹道射击实验,结合数字图像相关测试技术,获取了铆接油箱在射弹冲击作用下的箱体变形、破孔直径等数据;并建立流-固耦合有限元模型,分析射弹入射速度与射弹动能损失、箱体变形、流体动压、铆钉失效之间的关系。结果表明:有限元模拟结果与实验结果基本吻合,数值模型可用于描述油箱在水锤作用下的动力学行为;射弹动能损失、箱体变形量、液体压力峰值与射弹入射速度呈正比例关系;当射弹入射速度达到1400 m/s之后,油箱后壁板开始出现裂纹,并呈花瓣式破孔损伤;当射弹入射速度达到1600 m/s时,铆钉开始发生断裂。
  • 图  1  实验场景布置

    Figure  1.  Experimental layout

    图  2  有限元模型

    Figure  2.  Finite element model

    图  3  不同时刻实验与模拟中的油箱后壁板变形云图对比

    Figure  3.  Comparison of deformation contours of the back wall of the fuel tank in experiment and simulation at different time

    图  4  不同时刻油箱后壁板z轴变形

    Figure  4.  z-axis deformation of the back wall of the fuel tank at different times

    图  5  后壁板破孔实验结果和模拟结果的对比

    Figure  5.  Comparison of the experiment result and the simulation result of the broken hole in the back wall

    图  6  后壁板弹孔上方20 mm的速度

    Figure  6.  Velocity of units at 20 mm above the projectile hole in the back wall

    图  7  射弹加速度时程曲线

    Figure  7.  Projectile acceleration history curves

    图  8  油箱前后壁板对射弹的阻力及冲击波对后壁板单元的预应力

    Figure  8.  Projectile resistance from the front and back walls of the tank and prestress of the back wall elements by the shock wave

    图  9  射弹入射速度对动能损失的影响

    Figure  9.  Influence of projectile incident velocity on kinetic energy loss

    图  10  不同射弹入射速度下煤油的压力分布演化

    Figure  10.  Pressure contours of kerosene at different projectile impact velocities

    图  11  射弹入射速度对初始冲击波压力和持续时间的影响

    Figure  11.  Infuence of impact velocity of projectile on pressure of initial shock wave and its duration

    图  12  壁面测点处的煤油压力时程曲线

    Figure  12.  Time-history curves of kerosene pressure at measuring point on the side wall

    图  13  油箱前后壁板挠度变化

    Figure  13.  Deflection evolutions of the front and back walls

    图  14  后壁板等效应力云图

    Figure  14.  Equivalent stress contours of the back wall

    图  15  不同射弹入射速度下后壁板的损伤模式演化

    Figure  15.  Evolution of the damage patterns of the back wall at different projectile impact velocities

    图  16  铆钉发生最大变形时的等效应力云图

    Figure  16.  Equivalent stress of the rivets contours at maximum deformation

    图  17  铆钉不同方向变形

    Figure  17.  Rivet deflection at different directions

    图  18  不同射弹入射速度下铆钉变形对比

    Figure  18.  Comparison of rivet deformation under different projectile impact velocities

    图  19  油箱各构件总能量时程曲线

    Figure  19.  Total energy curves for various parts of the tank

    图  20  壁板和铆钉能量变化时程曲线

    Figure  20.  Energy curves of the back wall and the rivet

  • [1] 纪杨子燚, 李向东, 周兰伟, 等. 高速侵彻体撞击充液容器形成的液压水锤效应研究进展 [J]. 振动与冲击, 2019, 38(19): 242–252. DOI: 10.13465/j.cnki.jvs.2019.19.036.

    JI Y Z Y, LI X D, ZHOU L W, et al. Review of study on hydrodynamic ram effect generated due to high-velocity penetrator impacting fluid-filled container [J]. Journal of Vibration and Shock, 2019, 38(19): 242–252. DOI: 10.13465/j.cnki.jvs.2019.19.036.
    [2] ADDESSIO F L, SCHRAAD M W, LEWIS M W. Physics-based damage predictions for simulating testing and evaluation (T and E) experiments: LA-UR-99-484 [R]. New Mexico: Los Alamos National Laboratory, 1999.
    [3] BALL R E. Structural response of fluid containing tanks to penetrating projectiles (Hydraulic Ram): a comparison of experimental and analytical results: NPS-57BP76051 [R]. Monterey: Naval Postgraduate School, 1976.
    [4] DISIMILE P J, SWANSON L A, TOY N. The hydrodynamic ram pressure generated by spherical projectiles [J]. International Journal of Impact Engineering, 2009, 36(6): 821–829. DOI: 10.1016/j.ijimpeng.2008.12.009.
    [5] VARAS D, ZAERA R, LÓPEZ-PUENTE J. Numerical modelling of the hydrodynamic ram phenomenon [J]. International Journal of Impact Engineering, 2009, 36(3): 363–374. DOI: 10.1016/j.ijimpeng.2008.07.020.
    [6] REN P, ZHOU J Q, TIAN A L, et al. Experimental investigation on dynamic failure of water-filled vessel subjected to projectile impact [J]. International Journal of Impact Engineering, 2018, 117: 153–163. DOI: 10.1016/j.ijimpeng.2018.03.009.
    [7] 李营, 张玮, 杜志鹏, 等. 球形弹体打击作用下宽距水间隔铝板的动态响应特性 [J]. 振动与冲击, 2018, 37(1): 106–110. DOI: 10.13465/j.cnki.jvs.2018.01.017.

    LI Y, ZHANG W, DU Z P, et al. Dynamic responses of wide interval water-spacing aluminum plates under sphere projectile impact [J]. Journal of Vibration and Shock, 2018, 37(1): 106–110. DOI: 10.13465/j.cnki.jvs.2018.01.017.
    [8] 陈安然, 李向东, 周兰伟, 等. 液压水锤效应引起液体喷溅特性及其影响因素试验研究 [J]. 国防科技大学学报, 2021, 43(5): 144–152. DOI: 10.11887/j.cn.202105017.

    CHEN A R, LI X D, ZHOU L W, et al. Experimental study on the characteristics and influencing factors of liquid spurt caused by hydrodynamic ram [J]. Journal of National University of Defense Technology, 2021, 43(5): 144–152. DOI: 10.11887/j.cn.202105017.
    [9] 李亚智, 陈钢. 充液箱体受弹丸撞击下动态响应的数值模拟 [J]. 机械强度, 2007, 29(1): 143–147. DOI: 10.3321/j.issn:1001-9669.2007.01.029.

    LI Y Z, CHEN G. Numerical simulation of liquid-filled tank response to projectile impact [J]. Journal of Mechanical Strength, 2007, 29(1): 143–147. DOI: 10.3321/j.issn:1001-9669.2007.01.029.
    [10] VARAS D, ZAERA R, LÓPEZ-PUENTE J. Numerical modelling of partially filled aircraft fuel tanks submitted to hydrodynamic ram [J]. Aerospace Science and Technology, 2012, 16(1): 19–28. DOI: 10.1016/j.ast.2011.02.003.
    [11] MANSOORI H, ZAREI H. FSI simulation of hydrodynamic ram event using LS-Dyna software [J]. Thin-Walled Structures, 2019, 134: 310–318. DOI: 10.1016/j.tws.2018.10.002.
    [12] 蓝肖颖, 李向东, 周兰伟, 等. 双破片撞击充液容器时液体内压力分布研究 [J]. 振动与冲击, 2019, 38(19): 191–197. DOI: 10.13465/j.cnki.jvs.2019.19.029.

    LAN X Y, LI X D, ZHOU L W, et al. Pressure distribution inside liquid during a liquid-filled vessel impacted by double-fragment [J]. Journal of Vibration and Shock, 2019, 38(19): 191–197. DOI: 10.13465/j.cnki.jvs.2019.19.029.
    [13] 韩璐, 韩庆, 杨爽. 飞机油箱水锤效应影响因素及其影响程度研究 [J]. 航空工程进展, 2018, 9(4): 489–500. DOI: 10.16615/j.cnki.1674-8190.2018.04.005.

    HAN L, HAN Q, YANG S. Simulation analysis of hydrodynamic ram factors and effects in aircraft fuel tank [J]. Advances in Aeronautical Science and Engineering, 2018, 9(4): 489–500. DOI: 10.16615/j.cnki.1674-8190.2018.04.005.
    [14] 韩璐, 韩庆, 杨爽. 多破片高速冲击下飞机油箱水锤效应数值模拟 [J]. 爆炸与冲击, 2018, 38(3): 473–484. DOI: 10.11883/bzycj-2017-0230.

    HAN L, HAN Q, YANG S. Simulation analysis of hydrodynamic ram in an aircraft fuel tank subjected to high-velocity multi-fragment impact [J]. Explosion and Shock Waves, 2018, 38(3): 473–484. DOI: 10.11883/bzycj-2017-0230.
    [15] 陈钢. 高速弹丸冲击下油箱动态响应的数值模拟 [D]. 西安: 西北工业大学, 2005: 3–20. DOI: 10.7666/d.y843974.

    CHEN G. Numerical simulation of fuel tankresponse to projectile impact [D]. Xi’an: Northwestern Polytechnical University, 2005: 3–20. DOI: 10.7666/d.y843974.
    [16] BALL R E. The fundamentals of aircraft combat survivability: analysis and design [M]. 2nd ed. Reston: AIAA Education, 2003: 667–668. DOI: 10.2514/4.862519.
    [17] HULL B T, SEDALOR T, MIFSUD T. Utilization of hydrodynamic ram simulator to determine the dynamic strength thresholds of structural joints [C]//AIAA Scitech 2019 Forum. San Diego, California: American Institute of Aeronautics and Astronautics, 2019. DOI: 10.2514/6.2019-0524.
    [18] 崔新男, 汪旭光, 王尹军, 等. 爆炸加载下混凝土表面的裂纹扩展 [J]. 爆炸与冲击, 2020, 40(5): 052203. DOI: 10.11883/bzycj-2019-0364.

    CUI X N, WANG X G, WANG Y J, et al. External crack propagation of concrete surface under explosive loading [J]. Explosion and Shock Waves, 2020, 40(5): 052203. DOI: 10.11883/bzycj-2019-0364.
    [19] LIDÉN E, HELTE A. Fracture mechanics of long rod projectiles subjected to oblique moving plates [C]// Proceedings of the 26th International Symposium on Ballistics, 2011: 1736–1747.
    [20] BUYUK M, KURTARAN H, MARZOUGUI D, et al. Automated design of threats and shields under hypervelocity impacts by using successive optimization methodology [J]. International Journal of Impact Engineering, 2008, 35(12): 1449–1458. DOI: 10.1016/j.ijimpeng.2008.07.057.
    [21] NAYAK S K, SINGH A K, BELEGUNDU A D, et al. Process for design optimization of honeycomb core sandwich panels for blast load mitigation [J]. Structural and Multidisciplinary Optimization, 2013, 47(5): 749–763. DOI: 10.1007/s00158-012-0845-x.
    [22] 余海燕, 王友. 5052铝合金冲压成形过程中韧性断裂的仿真研究 [J]. 中国有色金属学报, 2015, 25(11): 2975–2981. DOI: 10.19476/j.ysxb.1004.0609.2015.11.003.

    YU H Y, WANG Y. Bulging simulation of ductile fracture of 5052 aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2015, 25(11): 2975–2981. DOI: 10.19476/j.ysxb.1004.0609.2015.11.003.
    [23] 马丽英, 李向东, 周兰伟, 等. 高速破片撞击充不同介质液体容器的数值计算及试验研究 [J]. 振动与冲击, 2018, 37(24): 115–122. DOI: 10.13465/j.cnki.jvs.2018.24.018.

    MA L Y, LI X D, ZHOU L W, et al. Numerical simulation and experimental study on high-speed fragment impact filling different liquid containers [J]. Journal of Vibration and Shock, 2018, 37(24): 115–122. DOI: 10.13465/j.cnki.jvs.2018.24.018.
    [24] MEDINA S F, HERNANDEZ C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels [J]. Acta Materialia, 1996, 44(1): 137–148. DOI: 10.1016/1359-6454(95)00151-0.
    [25] 纪德洋, 金锋, 冬雷, 等. 基于皮尔逊相关系数的光伏电站数据修复 [J]. 中国电机工程学报, 2022, 42(4): 1514–1522. DOI: 10.13334/j.0258-8013.

    JI D Y, JIN F, DONG L, et al. Data repairing of photovoltaic power plant based on pearson correlation coefficient [J]. Proceedings of the CSEE, 2022, 42(4): 1514–1522. DOI: 10.13334/j.0258-8013.
    [26] 蓝肖颖. 双破片作用下液压水锤叠加效应研究 [D]. 南京: 南京理工大学, 2019: 54–56. DOI: 10.27241/d.cnki.gnjgu.2019.000834.
    [27] CHOU P C, CHEN S. Hypervelocity impact of bumper-protected fuel tanks [J]. Journal of Spacecraft and Rockets, 1970, 7(12): 1412–1418. DOI: 10.2514/3.30183.
  • 加载中
图(20)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  88
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-27
  • 修回日期:  2023-05-05
  • 网络出版日期:  2023-06-05
  • 刊出日期:  2023-07-05

目录

    /

    返回文章
    返回