Processing math: 100%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

成层式防护结构中分散层研究综述

周辉 任辉启 吴祥云 易治 黄魁 穆朝民 王海露

章浪, 赵丰鹏, 张钰忠, 邓勇军, 李继承. 钨纤维增强金属玻璃复合材料的长杆弹斜侵彻/穿甲性能[J]. 爆炸与冲击, 2025, 45(3): 033302. doi: 10.11883/bzycj-2024-0158
引用本文: 周辉, 任辉启, 吴祥云, 易治, 黄魁, 穆朝民, 王海露. 成层式防护结构中分散层研究综述[J]. 爆炸与冲击, 2022, 42(11): 111101. doi: 10.11883/bzycj-2022-0280
ZHANG Lang, ZHAO Fengpeng, ZHANG Yuzhong, DENG Yongjun, LI Jicheng. Ballistic performance of tungsten fiber-reinforced metallic glass composite in the long rod oblique penetration/perforation[J]. Explosion And Shock Waves, 2025, 45(3): 033302. doi: 10.11883/bzycj-2024-0158
Citation: ZHOU Hui, REN Huiqi, WU Xiangyun, YI Zhi, HUANG Kui, MU Chaomin, WANG Hailu. A review of sacrificial claddings in multilayer protective structure[J]. Explosion And Shock Waves, 2022, 42(11): 111101. doi: 10.11883/bzycj-2022-0280

成层式防护结构中分散层研究综述

doi: 10.11883/bzycj-2022-0280
基金项目: 国家重点研发计划(2021YFC31008);安徽高校研究生科学研究项目(YJS20210393)
详细信息
    作者简介:

    周 辉(1995- ),男,博士研究生,huizhou9509@163.com

    通讯作者:

    任辉启(1953- ),男,博士,研究员,博士生导师,中国工程院院士,Huiq_ren@163.com

  • 中图分类号: O383.2

A review of sacrificial claddings in multilayer protective structure

  • 摘要: 成层式防护结构通常由伪装层、遮弹层、分散层和主体结构组成,现已被广泛应用于地面、浅埋以及坑道口部的防御工事中。其中分散层作为降低侵彻后爆炸毁伤效应的功能单元,其作用机理主要包括:借助波阻抗失配效应以降低向下部结构传播的能量占比、延长应力波传播路径;利用分层界面产生面波以改善荷载集中状态;通过基体材料不可逆塑性破坏以吸收耗散冲击波能量;增大结构阻尼以减轻主体结构震动效应。开展分散层的相关研究,对提高工程整体防护水平具有重要的现实意义。基于此,从分散层材料与结构型式两个方面较为系统地介绍了国内外成层式防护结构中分散层的研究现状,分析了分散层的结构及物性参数对其防护效能的影响,提出分散层选型及设计需关切的几点问题,并对目前分散层研究中存在的问题进行了探讨与展望,以期为今后分散层的研究发展提供参考。
  • 动能穿甲弹的穿甲能力取决于材料强度、质量以及撞击速度等多种因素。在现代穿甲技术中,钨合金和贫铀合金是2种常用的弹芯材料,然而它们在应用过程中均存在不足:钨合金弹体在穿甲过程中因材料具有良好的塑性,弹头易形成类似“蘑菇头”的膨胀结构,这种结构会增大穿甲阻力,进而削弱穿甲效果[1];贫铀合金弹体则常发生“自锐”现象[2],即弹头前端保持尖锐,但贫铀材料伴随的放射性限制了其应用[3]。鉴于上述瓶颈,20余年来,军事领域一直致力于探索对人和环境无放射性危害且具有“自锐”特性的新型动能穿甲弹芯材料,其中钨纤维增强金属玻璃复合材料具有巨大潜力[4]。该复合材料弹体得益于其金属玻璃(metallic glass,MG)基体的高剪切敏感性[5-6],在侵彻/穿甲过程中弹头易呈现出尖锐构型,即“自锐”行为,其侵彻/穿甲能力得到明显提升[7-21]

    一般而言,侵彻/穿甲试验成本高昂,且试验难以捕捉撞击过程中弹靶的变形和破坏细节,也难以测量高速冲击条件下弹体的应力-应变情况。随着计算机技术和材料动态本构模型的发展,有限元模拟已成为侵彻/穿甲试验的良好补充,有助于更深入的机理研究[15-16, 22-24]。Li等[25-26]引入材料微结构自由体积参量,以准确描述金属玻璃基体特有的高强度和高剪切敏感性,进一步发展了热力耦合本构模型,并根据钨纤维增强金属玻璃复合材料的细观结构建立了弹体有限元模型,基于相关穿甲试验,开展了复合材料长杆弹在正侵彻条件下侵彻/穿甲钢靶的有限元模拟,分析了复合材料弹体的“自锐”机理,并系统地探讨了多个关键因素对复合材料弹体“自锐”行为的影响。

    在实际工程应用中,动能穿甲弹受发射条件和装甲结构设计等因素的影响,对目标的打击多为斜撞击而非理想的正撞击。在斜撞击过程中,弹体受到靶板的非对称作用力,其弹道特征可能出现偏转甚至跳弹现象[27-28]。然而,对于钨纤维增强金属玻璃复合材料长杆弹斜撞击靶板过程中,弹体在非对称作用力下的变形和破坏特征及其“自锐”特性将可能与正撞击情形截然不同,试验[9]也显示,相较于正撞击,斜撞击条件下复合材料弹体的侵彻/穿甲性能降低,有必要开展进一步研究。

    基于Li等[15-16, 22-23]、陈建良等[24]提出的有限元模拟方法,结合相关侵彻/穿甲试验,针对钨纤维增强金属玻璃复合材料和钨合金材料2种材质的长杆弹开展斜侵彻/穿甲钢靶的三维有限元模拟分析,研究2种材质弹体在斜侵彻过程中的弹靶变形和破坏特征,并对比复合材料弹体在正/斜侵彻条件下的“自锐”特征和弹道行为,分析不同撞击速度下撞击倾角对复合材料长杆弹“自锐”行为、侵彻/穿甲性能及相应弹道特征等的影响。

    参考相关穿甲试验[9],采用弹道炮发射8 mm×88 mm的复合材料弹体和钨合金弹体,正/斜侵彻50 mm厚的30CrMnMo钢靶。复合材料弹体的形貌如图1所示,弹体头部为半球形,弹体中增强钨纤维体积约占80%,直径约为0.3 mm。弹体斜侵彻/穿甲靶板的初始状态如图2所示,其中:D为弹体直径;L为弹体长度;v0为弹体的初始速度;靶板倾角θ为靶体表面法线方向与弹体初始速度方向的夹角;H为靶板厚度(试验中,H=50 mm);S为斜侵彻/穿甲时的靶板有效厚度,S=H/cosθ

    图  1  穿甲试验中复合材料弹体的初始形貌[9]
    Figure  1.  Initial composite long rod in penetration test[9]
    图  2  弹靶结构与撞击姿态示意图
    Figure  2.  Schematic diagram of the projectile and target structures and the impact attitude

    对于复合材料弹体正侵彻/穿甲靶板,二维数值模拟能够描述弹靶变形和破坏的主要特征[15-16, 22-24]。针对斜撞击条件,本文中,将开展三维模拟分析。考虑到弹靶结构和撞击条件的平面对称特征,为减小计算规模,数值模型将采用1/2弹靶结构。复合材料弹体的三维有限元模型如图3(a)所示,其中:MG matrix为金属玻璃基体,WF为钨纤维。弹体和靶板网格均采用八节点六面体单元进行划分,网格尺寸约为75 μm,网格之间以共节点的方式进行固接,弹身横截面的网格划分如图3(b)所示。Zhang等[29]的研究表明,钨纤维与金属玻璃基体之间的界面结合良好,扫描电子显微镜(scanning electron microscope,SEM)直观地显示了实际复合材料的横截面(图3(c))。由图3(a)~(c)可知,所构建的有限元模型能够准确描述复合材料的细观结构特征,验证了模型的准确性。

    图  3  复合材料长杆弹的三维有限元模型
    Figure  3.  3D finite element geometrical model of a composite long rod

    对钨合金弹体进行数值模拟时,将复合材料弹体模型中的基体材料替换为钨合金材料即可。

    1.2.1   金属玻璃材料

    Li等[25-26]推导的三维修正热力耦合本构模型综合考虑了多种因素对金属玻璃变形和破坏的影响,如应变率、自由体积浓度、温度、应力以及静水应力等,从而能够准确描述金属玻璃材料在不同应变率和初始温度下的力学行为特性。试验弹体中,金属玻璃基体的本构模型参数如表1所示,其中:˙ε为应变率,Λc为压缩条件下的静水应力敏感因子,Λt为拉伸条件下的静水应力敏感因子。

    表  1  锆基金属玻璃的修正热力耦合模型参数[25-26]
    Table  1.  Parameters in the modified coupled thermo-mechanical constitutive model for Zr-based metallic glass[25-26]
    参量 符号 单位 数值
    弹性模量 E GPa 96
    泊松比 ν 0.36
    密度 ρ kg/m3 6125
    熔化温度 Tm K 993
    玻璃转变温度 Tg K 625
    初始温度 T0 K 300
    比定容热容 cV J/(kg·K) 400
    临界体积 v* m3 2.0×10−29
    平均原子体积 Ω m3 2.5×10−29
    原子振动频率 f s−1 1×1013
    临界破坏自由体积浓度 ξc 0.065
    初始自由体积浓度 ξ0 0.05
    运动激活能 ΔGm eV ΔGm(˙ε)
    几何因子 α 0.05
    所需跃迁次数 nD 3
    静水应力敏感因子 Λ 0.05(Λc
    0.35(Λt
    下载: 导出CSV 
    | 显示表格
    1.2.2   金属材料

    30CrMnMo钢靶、钨合金弹体以及复合材料弹体中的增强钨纤维等均为常规的晶态合金材料。为了描述高应变率下合金材料的力学行为,综合Johnson-Cook本构模型[30]和累积损伤失效模型[31]来表征金属材料的力学性能,采用Grüneisen状态方程[32]来描述穿甲过程中金属材料的压力状态。钨合金和30CrMnMo钢的Johnson-Cook模型参数如表2所示,其中:˙ε0为参考应变率,Tr为参考温度,A为参考应变率条件下的屈服强度,B为应变硬化系数,C为应变率敏感系数,m为温度敏感系数,n为应变硬化指数,D1D5为材料损伤参数,c0为体积声速,S1vs-vp曲线斜率的系数(vs为冲击波速度,vp为粒子速度),γ0为Grüneisen系数,a为对γ0的一阶体积修正。其他材料模型参数可参考文献[15-16, 22-23]。

    表  2  金属材料的Johnson-Cook模型参数
    Table  2.  Johnson-Cook model parameters of metallic materials
    材料 ρ/(kg·m−3) ν E/GPa ˙ε0/s−1 Tr/K Tm/K cV/(J·kg−1·K−1)
    95W钨合金 17900 0.28 410 1 300 1752 134
    30CrMnMo钢 7850 0.29 200 1 300 1793 477
    材料 A/MPa B/MPa C m n D1 D2
    95W钨合金 1650 450 0.016 1.00 0.12 3.00 0
    30CrMnMo钢 1200 310 0.014 1.03 0.26 3.20 0
    材料 D3 D4 D5 c0/(m·s−1) S1 γ0 a
    95W钨合金 0 0 0 3850 1.44 1.58 0
    30CrMnMo钢 0 0 0 4578 1.38 1.67 0.47
    下载: 导出CSV 
    | 显示表格

    Li等[15]对文献[9]中的弹体正侵彻进行了模拟分析,本文中,对文献[9]中的2种斜侵彻试验进行数值模拟,试验和模拟结果如表3所示,其中:带“*”号数据是从文献中的图直接测量得到。

    表  3  侵彻试验[9]以及相应的数值模拟结果
    Table  3.  Penetration test[9] and the corresponding simulation results
    弹材 撞击速度/
    (m·s−1)
    倾角/
    (°)
    侵彻深度/mm 剩余弹长/mm
    试验[9] 模拟 试验[9] 模拟
    钨合金 852.9 0 23.4 22.2[15] 14.1* 13.2[15]
    1076.2 0 背面鼓包 47.7[15] 14.1[15]
    1235.1 50 背面鼓包 49.7 12.8
    复合材料 857.5 0 36.4 32.3[15] 18.8* 17.1[15]
    1066.3 0 穿透 穿透[15] 28.0* 26.0[15]
    1263.9 50 穿透 穿透 14.5
    下载: 导出CSV 
    | 显示表格

    倾角θ=50°、撞击速度v0=1235.1 m/s时,钨合金弹斜侵彻靶板的最终弹靶变形和破坏形貌如图4所示,其中:图4(a)~(c)分别为靶板纵截面、正面和背面的数值模拟结果,图4(d)~(e)分别为实际靶板正面和背面的最终形貌。可以看出,数值模拟结果中,靶板前端的椭圆形开孔和花瓣形撕裂形貌、靶板后端的隆起鼓包形貌等均与试验结果较为相符,侵彻深度和剩余弹长的模拟值与试验值也较一致(表3)。由于钨合金弹体具有良好的塑性,在侵彻过程中其头部发生镦粗变形,导致靶板内形成的弹孔直径相较于原始弹体直径明显增大,特别是在靶板的开坑区域,由于倾斜撞击作用,靶板的开孔口径显著增大,约为弹径的3倍,且靶孔呈现显著的非对称特征,下端孔口相对光滑而上端孔口发生显著的花瓣形撕裂(图4(a)~(b))。另外,受靶板两侧的挤压和摩擦作用,弹体发生质量侵蚀,即弹体碎片自弹头外边缘剥落并向后端流出,碎片的外流也表现出非对称特征,主要沿靶孔上表面流出(图4(a))。由于弹头镦粗变形导致较大的侵彻阻力,钨合金弹体未能穿透靶板,而是在靶板背面形成较大鼓包,其侵彻能力与钨合金弹在θ=0°(正侵彻)、v0=1076.2 m/s条件下的侵彻能力相近(表3);弹体侵蚀也较严重,剩余弹体长度仅为12.8 mm。特别地,由于斜侵彻(θ=50°),弹体在侵彻后期临近穿透靶板时,靶板背面施加于弹体的侵彻阻力并不对称,导致弹道轨迹偏转,同时弹体自身发生明显弯曲,弹头的镦粗变形也呈现出非对称特征(图4(a))。

    图  4  钨合金弹斜侵彻30CrMnMo钢靶的弹靶变形和破坏形貌(θ=50°,v0=1235.1 m/s)
    Figure  4.  Deformation and failure morphologies of projectile and target materials after tungsten alloy long rod penetrating a 30CrMnMo steel target (θ=50°, v0=1235.1 m/s)

    θ=50°、v0=1263.9 m/s时,复合材料弹体斜侵彻钢靶的最终弹靶变形和破坏形貌如图5所示,结合表3中的侵彻深度和剩余弹长可知,数值模拟与试验结果符合较好。与图4中的钨合金弹斜侵彻相比,弹体在侵彻初期的镦粗变形程度减弱,进而导致靶板前端的开孔口径减小(图5(a)),上端孔口的花瓣形撕裂程度也减弱;在随后的侵彻过程中,复合材料弹体头部发生显著的剪切“自锐”行为,弹头表现为尖头构型,并导致靶板孔径减小,基本与弹径相当;在侵彻后期临近穿透靶板时,受靶板背面的非对称侵彻阻力作用,弹道轨迹偏转,弹头的锐化尖头构型也呈现出非对称特征(图5(a)),但弹体自身未弯曲。由于复合材料弹体的“自锐”行为,其受到的靶板阻力小于钨合金弹工况,因此,弹体侵彻性能显著提高,在相近的撞击速度下直接穿透靶板,同时弹体侵蚀程度也有所减小,剩余长度约为14.5 mm,比钨合金弹工况下的剩余弹长(12.8 mm)长。

    图  5  复合材料弹斜侵彻30CrMnMo钢靶的弹靶变形和破坏形貌(θ=50°,v0=1263.9 m/s)
    Figure  5.  Deformation and failure morphologies of projectile and target materials after a composite long rod penetrating a 30CrMnMo steel target (θ=50°, v0=1263.9 m/s)

    钨合金弹和复合材料弹在不同撞击倾角和速度下的残余弹体形貌如图67所示。可以看出,在正侵彻条件下,2种材质弹体的后端部分均较好地保持了初始形态,未出现明显变形;对于弹体头部,钨合金弹头镦粗为“蘑菇头”形状,临近弹头的弹身直径也明显增大(图6(a)~(b)和(d)),而复合材料弹头在“边缘层”[11, 14]区域锐化为尖头结构,且尖头结构后端区域的弹身与初始形貌基本相同(图7(a)~(b)和(d))。在斜侵彻条件下,因为侵彻后期的弹道轨迹偏转,2种弹体的后端区域均与靶板发生碰撞和摩擦作用,进而产生变形和破坏,钨合金弹体甚至发生了一定程度的弯曲(图6(c));对于弹体头部,钨合金弹头也镦粗为“蘑菇头”形状(图6(c)),复合材料弹头锐化为尖头构型(图7(c)),且二者均呈现出显著的非对称特征,与正侵彻工况明显不同,结合图4(a)和图5(a)可知,钨合金弹和复合材料弹头部的变形主要发生在与靶孔下表面接触的区域,即弹头的非对称变形和破坏形貌主要源于靶板作用的非对称特征。

    图  6  钨合金弹在不同撞击倾角和速度下的残余弹体形貌
    Figure  6.  Residual morphology of tungsten alloy projectiles after the impact at different oblique angles and initial velocities
    图  7  复合材料弹在不同撞击倾角和速度下的残余弹体形貌
    Figure  7.  Residual morphology of composite projectiles after the impact at different oblique angles and initial velocities

    本节进一步分析斜侵彻/穿甲条件下复合材料弹体的变形和破坏特征,详细讨论其独特的“自锐”行为及作用机制,并与钨合金弹进行对比。

    钨合金弹(θ=50°,v0=1235.1 m/s)斜侵彻50 mm厚的30CrMnMo钢靶时,弹靶内部的塑性应变发展历程如图8所示。可以看出,在斜侵彻的开坑阶段,由于钨合金具有较高的塑性,并且弹体受到靶板施加的非对称侵彻阻力,因此,弹头材料主要向阻力较小的上侧发生侵蚀和流动,初始的半球形弹头发生非对称镦粗变形,其上侧区域的镦粗程度显著大于下侧区域,导致靶板前端的靶孔直径远大于弹径,也呈现出显著的非对称特征(图8(a))。随后,弹头完全侵入靶板,此时弹体受到的靶板阻力较为对称,弹头的镦粗逐渐呈现出相对对称的“蘑菇头”形状,但形貌的对称程度较正侵彻/穿甲工况(图6(b))有所降低,该侵彻过程相对稳定,受靶板两侧的挤压作用,弹头材料从镦粗的“蘑菇头”两侧侵蚀剥落并向弹体后端流失,靶板孔径较初期开坑阶段明显减小(图8(b))。弹体临近靶板后端时,由于弹体前端的靶体材料厚度显著降低,使得靶板的变形模式转变为薄靶的整体响应,靶板背面开始出现鼓包变形;类似地,由于靶板倾斜放置,靶板后端未侵蚀区域的厚度不均匀,后端的鼓包变形不对称,靶体材料施加到弹体的侵彻阻力也不对称,弹道轨迹向侵彻阻力较小的下侧发生偏转,同时弹体发生一定程度的弯曲变形(图8(c)~(d)),弹头的镦粗变形再次呈现出非对称特征(图6(c))。相应地,弹体弯曲变形和弹道偏转进一步增大了弹体的侵彻阻力,且靶板倾斜放置增加了有效厚度,弹体最终未能穿透靶板,弹体侵蚀也更为严重,剩余弹长进一步减小(表3)。

    图  8  钨合金弹斜侵彻靶板时弹靶的塑性应变发展历程(θ=50°,v0=1235.1 m/s)
    Figure  8.  Development of effective plastic strain in the projectile and target materials during the penetration of tungsten alloy long rod (θ=50°, v0=1235.1 m/s)

    复合材料弹(θ=50°,v0=1263.9 m/s)斜侵彻50 mm厚的30CrMnMo钢靶时弹靶内部的塑性应变发展历程如图9所示。在斜侵彻开坑阶段,同样受到靶板的非对称侵彻阻力,弹头材料也主要向上侧侵蚀和流动,弹头发生非对称的镦粗变形,导致靶板前端形成相对较大的孔径(图9(a)),但弹头的镦粗程度和靶板的孔径均明显小于钨合金弹工况(图8(a))。主要原因在于,高速冲击下,复合材料弹体中的金属玻璃基体具有极高的强度和剪切敏感性[15-16, 22-23, 28-29],在破坏之前可较好地约束钨纤维的变形,而在损伤破坏之后,其局域化剪切带或剪切裂纹对钨纤维产生强烈冲击,导致弹头前端形成一个“边缘层”[15-16],“边缘层”内的钨纤维受靶板的侧向挤压而迅速发生剪切破坏并从弹体剥落,因此,弹头的镦粗程度相对较弱。在随后的弹头完全侵入靶板的过程中,靶板的阻力逐渐对称,弹头的非对称变形和破坏特征减弱,弹头逐渐“自锐”为尖头结构(图9(b)),但形貌的对称程度较正侵彻/穿甲工况(图7(b))有所降低,相应地,侵彻过程中靶板的孔径逐渐与弹径相当。在弹体临近靶板后端时,靶板背面也发生不对称的鼓包变形,导致弹道轨迹向靶板下侧偏转,同时弹体发生弯曲变形,且弹头的“自锐”变形再次呈现非对称特征(图9(c)~(d)),由于弹体内金属玻璃基体的高强度和高硬度,弹体的弯曲程度较钨合金弹工况有所降低(图8(c))。由于弹头锐化导致侵彻阻力较低,弹体的侵彻能力提升,最终穿透靶板(图5(a)),弹体侵蚀程度严重,剩余弹长明显减小(表3),弹体最终的尖头形貌呈现出显著的非对称特征(图7(c))。

    图  9  复合材料弹斜侵彻靶板时弹靶的塑性应变发展历程(θ=50°,v0=1263.9 m/s)
    Figure  9.  Development of effective plastic strain in the projectile and target materials during the penetration of composite long rod (θ=50°, v0=1263.9 m/s)

    图10为2种弹体斜侵彻后靶孔最终的轮廓形貌。可以看出:对于2种弹体,靶板的弹道形貌均表现出靶板前端面区域的开坑和临近后端面区域的弹道偏转特性;在整个侵彻过程中,钨合金弹形成的靶板孔径均大于复合材料弹形成的靶板孔径,前者约为后者的1.4倍,钨合金弹体的侵彻深度小于复合材料弹体的侵彻深度。相关差异也主要源于钨合金弹体的头部镦粗变形和复合材料弹体的“自锐”行为。

    图  10  不同弹体斜侵彻/穿甲后靶板孔洞的轮廓形貌(θ=50°)
    Figure  10.  Contour morphologies of penetrating hole in the target after the impact of different long rods (θ=50°)

    在弹体侵彻/穿甲过程中,弹体速度是靶板对弹体产生阻力的一个重要参量。图11给出了2种弹体在不同穿甲条件下的速度变化曲线。由图11表3可知:撞击倾角一致时,侵彻前期,2种弹体的速度变化几乎一致;但在侵彻后期,钨合金弹体的速度下降明显快于复合材料弹体,这主要归因于复合材料弹的头部展现出的“自锐”特性,使得弹体在侵彻时所受阻力显著小于弹头呈镦粗状态的钨合金弹体。另外,相较于正侵彻/穿甲,斜侵彻/穿甲工况下弹体速度下降更快,这主要源于在斜侵彻/穿甲过程中弹头的非均匀变形和弹道弯曲特征。

    图  11  不同弹体在不同侵彻/穿甲条件下的速度变化曲线
    Figure  11.  Variation of velocity of different projectiles under different long rods and impact conditions

    综上所述,长杆弹斜撞击时,在开坑阶段,受到靶板的非对称阻力,弹头材料向阻力较小的一侧侵蚀和流动,进而导致弹头发生非对称的镦粗变形;在随后相对稳定的侵彻过程中,弹头的非对称变形和破坏特征逐渐减弱,且复合材料弹头开始发生“自锐”行为;在侵彻后期,弹道轨迹向靶板阻力较小的一侧偏转,同时弹体发生弯曲变形,弹头结构的非对称特征再次增强。相较于正撞击,斜侵彻/穿甲工况下,由于受力的非对称性,复合材料弹头的“自锐”特征减弱,易发生非对称变形和破坏,弹体侵蚀和弹道偏转明显加剧。在相同斜撞击工况下,复合材料弹的头部镦粗、弯曲变形和弹道偏转等均小于钨合金弹,其侵彻/穿甲性能仍高于钨合金弹。

    如上所述,复合材料弹在斜侵彻/穿甲过程中将受到非对称的靶板阻力,进而导致与正侵彻/穿甲情形显著不同的弹头“自锐”特征和弹道特性。不同的撞击倾角下,弹体在开坑阶段和后期穿靶阶段受到靶板上下两侧所施加的阻力差异将有所不同,这可能使得弹靶的变形和破坏特征以及弹道偏转产生显著差别,最终导致不同的侵彻/穿甲性能。为了分析撞击倾角的影响,选取v0=857.5 m/s为典型中低速撞击速度,v0=1263.9 m/s为典型高速撞击速度,模拟撞击倾角θ在0°~70°范围内复合材料弹体撞击钢靶的全过程。

    θ=30°时,2种典型速度下复合材料弹体撞击钢靶的弹靶变形和破坏历程如图12所示。由图12(a)~(c)可知,高速侵彻时,因基体材料的屈服强度较高,基体材料在破坏之前对钨纤维形成较强约束,使得在开坑阶段,弹头区域材料的侵蚀较小,基体材料破坏后其内部剪切带或剪切裂纹快速切断临近钨纤维,使其向后端流失,因此,弹头的镦粗变形并不明显(图12(a))。在后续侵彻过程中,随着靶板上下两侧的挤压作用逐渐对称,弹头的镦粗变形程度降低,结构的非对称性程度减弱(图12(b))。在后期弹体临近靶板后端时,由于靶板的倾斜放置,靶板后端的隆起鼓包呈非对称性,靶板两侧对弹头的挤压作用也不对称,使得弹头上侧表现为剪切破坏,而下侧钨纤维难以被切断,弹头又呈现出一定程度的非对称镦粗变形(图12(c))。此外,在高速侵彻过程中,侵彻初期弹体头部承受非对称阻力作用的时间较短,并且弹头镦粗程度较低,导致靶板阻力较小,因此,弹道的偏转程度较低,总体来说相对笔直(图12(c))。

    图  12  复合材料弹体在不同速度下撞击钢靶的弹靶变形和破坏历程(θ=30°)
    Figure  12.  Deformation and failure process of composite long rod projectiles and targets during the penetration at different impact velocities (θ=30°)

    图12(d)~(f)所示,中低速侵彻时,金属玻璃基体对钨纤维的前期约束作用和后期冲击剪切作用减弱,使得弹头明显镦粗,同时弹头承受非对称阻力作用的时间较长,弹头的镦粗变形呈现出显著的非对称特征,且弹道也开始发生偏转(图12(d))。在后续侵彻过程中,弹头的镦粗程度和非对称特征减弱,但弹道持续偏转(图12(e))。在后期,弹头发生“自锐”行为,锐化的尖头构型呈现非对称特征,弹道继续偏转,弹体整体侵蚀程度严重(图12(f))。相较于高速侵彻,中低速侵彻时,复合材料弹体的侵彻能力显著降低。

    θ取50°和70°、v01263.9和857.5 m/s时,复合材料弹体撞击钢靶的最终弹靶变形和破坏形貌如图13所示。由图13(b)可知,θ=50°、v0=857.5 m/s时,弹道严重偏转,弹体严重侵蚀破坏,未形成有效侵彻。θ=70°工况下,弹体的侵彻性能进一步衰减,v0=1263.9 m/s时,弹道严重偏转(图13(c)),v0=857.5 m/s时,弹体直接跳飞(图13(d))。

    图  13  复合材料弹体在不同倾角和速度条件下撞击钢靶的最终弹靶变形和破坏形貌
    Figure  13.  Final deformation and failure morphologies of composite long rod projectiles and targets after the impact at different oblique angles and initial velocities

    图14给出了复合材料弹体以不同撞击速度和撞击倾角侵彻/穿甲钢靶后靶板孔洞的轮廓形貌,相应的剩余弹体形貌和弹体速度变化历程曲线如图1516所示。θ=70°时,弹体未能形成有效侵彻甚至发生跳飞,因此,不列出相关结果。由图14(a)可知,v0=1263.9 m/s时,随着撞击倾角的增大,靶板前端的开孔口径逐渐增大,孔洞的非对称特征也更加明显,表明随着撞击倾角的增大,弹头材料加剧向靶孔上侧侵蚀和流动,弹头的镦粗变形程度增强;在后续侵彻过程中,不同撞击倾角工况下靶板的孔径均逐渐减小,并最终与弹径一致,弹道相对笔直,表明弹体均发生了“自锐”行为;在侵彻后期弹体接近靶板后端面时,弹道轨迹向下偏转逐渐加剧,后端靶孔的非对称特征更加明显。v0=857.5 m/s(图14(b))时,靶板前端的开坑孔径随着倾角的增加而不断增大;在后续侵彻过程中,不同撞击倾角工况下的靶孔均逐渐变小,最终的靶孔底端呈现出尖锐的构型特征,构型的非对称特征随着倾角的增加而增强,弹道偏转也更为显著;当倾角达到50°以上时,弹体已无法形成有效侵彻。

    图  14  复合材料弹体以不同速度和倾角侵彻/穿甲钢靶后靶板孔洞的轮廓形貌
    Figure  14.  Contour morphologies of target plate holes after composite long rod impact at different initial velocities and oblique angles
    图  15  复合材料弹体以不同速度和倾角侵彻/穿甲钢靶后残余弹体的形貌
    Figure  15.  Residual morphology of projectiles after the penetration/perforation of composite long rods at different initial velocities and oblique angles
    图  16  复合材料弹体以不同速度和倾角侵彻/穿甲钢靶时弹体的速度变化曲线
    Figure  16.  Variation of velocity of composite long rods at different initial velocities and oblique angles

    图15(a)可以看出,在v0=1263.9 m/s工况下,当θ<50°时,在侵彻后期临近穿透靶板时,弹体均受薄靶响应特征影响而发生一定的镦粗变形,且弹头的镦粗程度和构型的非对称特征均随着撞击倾角的增大而增强。当θ=50°时,受较大的靶板倾斜角度和弹体后期较低的穿透靶板速度影响,弹头又呈现出非对称的尖锐头型特征;此外,倾角增加使得靶板的有效厚度增大,随着倾角的增加,弹体侵蚀更为严重,剩余长度逐渐减小,且减小幅度更为明显。由图15(b)可知,v0=857.5 m/s工况下,随着撞击倾角的增大,弹体下侧面的侵蚀和弹体的弯曲变形程度加剧,剩余弹体头形的非对称特征也增强,但剩余弹长基本相同,主要是因为弹道偏转加剧,弹体的侵彻路程差距较小,弹体的侵蚀也基本相同。另外,对比图15(a)和图15(b)可知,在θ<50°范围内,相同撞击倾角工况下,撞击速度越低,弹体的侵蚀程度越严重,与雷波[9]的试验结果相同,这也源于金属玻璃基体强度和剪切敏感性的应变率相关性[15-16, 22-23, 25-26];当θ=50°时,由于v0=857.5 m/s时弹体未能形成有效侵彻,剩余弹长反而相对较长。

    图16(a)可知,高速侵彻时,随着撞击倾角的增大,弹体速度的下降幅度增大,但变化特征基本一致。这主要是因为,在靶板倾斜放置产生非对称阻力的条件下,弹头仍能较好地发生“自锐”行为(图15(a)),且弹道相对笔直(图14(a))。由图16(b)可知,中低速侵彻时,相较于正侵彻,θ<40°范围内弹体速度下降更快,这是受弹头“自锐”能力降低、弹道偏转(图14(b))以及弹身与靶板孔壁相互作用(图15(b))等因素的综合影响;当θ≥40°时,随着撞击倾角的增大,弹体速度减速变小,这是因为弹道偏转严重,弹体主要在靶板的前端面附近穿行,受到的靶板总体阻力变小,此时弹体已难以形成有效侵彻。

    综上所述,在侵彻初期开坑阶段,不同撞击速度下,随着撞击倾角的增大,由于弹体受力的非对称性,复合材料弹体头部的“自锐”行为更难发生;在侵彻后期弹体临近穿透靶板时,高速侵彻工况下,随着倾角的增大,弹道偏转程度以及弹头变形和破坏的非对称特征加剧,弹体侵蚀更严重。相应地,弹体的侵彻/穿甲性能随倾角增加而逐渐降低,弹体可形成有效撞击的速度阈值也逐渐提高,当倾角达到50°后,弹体在900 m/s速度范围内难以形成有效侵彻。总体来说,撞击倾角对复合材料弹体的侵彻/穿甲主要起到消极影响,实际工程应用中应尽量减小撞击倾角。

    基于细观有限元模拟,研究了钨纤维增强金属玻璃复合材料长杆弹对50 mm厚30CrMnMo钢靶的斜侵彻/穿甲性能,并与钨合金长杆弹进行对比分析,讨论了撞击倾角对复合材料弹体的“自锐”特性、穿甲性能以及相应弹道行为的影响,得到以下主要结论。

    (1) 复合材料长杆弹对钢靶的斜侵彻/穿甲行为与正撞击行为完全不同。在弹体斜撞击开坑阶段,受靶板的非对称阻力作用,弹头发生非对称的镦粗变形;在后续侵彻过程中,弹头的非对称变形和破坏特征减弱,并发生“自锐”行为;在侵彻后期,非对称的靶板阻力使弹体弯曲,弹头结构又呈现非对称特征,弹道轨迹偏转。相较于正撞击,斜撞击时,复合材料弹体的“自锐”性能降低,弹体侵蚀和弹道偏转程度加剧,弹体速度加速下降,弹体的侵彻/穿甲性能降低,但仍高于钨合金弹的侵彻/穿甲性能。

    (2) 随着撞击倾角的增大,在弹体初期开坑阶段弹头的“自锐”行为更难发生,在侵彻后期弹道的偏转以及弹头的非对称变形和破坏特征加剧,弹体侵蚀更严重,弹体侵彻/穿甲性能降低, 甚至难以形成有效侵彻。

    总体来说,撞击倾角不利于复合材料弹体的侵彻/穿甲,在实际工程应用中,应尽量减小撞击倾角。

  • 图  1  典型的成层式防护结构示意图

    Figure  1.  Schematic diagram of typical multilayer protective structure

    图  2  准静态压缩下泡沫混凝土典型的应力应变曲线示意图

    Figure  2.  Typical stress-strain curves of foam concrete under quasi-static compression

    图  3  空气夹层成层式结构破坏演化过程示意图

    Figure  3.  Failure evolution process of the multilayer protection structure with an air distribution layer

    图  4  黏弹性阻尼材料的应力-应变曲线及分子链的变化[69]

    Figure  4.  Stress-strain curve of viscoelastic damping material and the change of corresponding molecular chains[69]

    图  5  薄壁柱壳分散层示意图

    Figure  5.  The distribution layer consisting of thin-walled tubes

    图  6  薄壁柱壳轴向压溃变形模式[71]

    Figure  6.  Collapse deformation mode of thin-walled tube under axial compression[71]

    图  7  不同空间尺度下金属泡沫的结构特征

    Figure  7.  Structural features of metal foams at different spatial scales

    图  8  三明治夹芯复合结构[116]

    Figure  8.  Sandwich composite structure[116]

    图  9  不同密度梯度分布时多胞材料的防护效能[125]

    Figure  9.  Protective effect of cellular materials with different continuous-density graded[125]

    图  10  不同密度多孔混凝土的抗压强度

    Figure  10.  Compressive strength of cellular concrete with different density

    图  11  不同密度多胞材料的典型应力-应变曲线示意图

    Figure  11.  Typical stress-strain curves of cellular materials with different densities

    图  12  不同泡沫混凝土分散层厚度下各层结构内能时程曲线[15]

    Figure  12.  Time history curves of internal energy of each layer under different thickness of foamed concrete layer[15]

    表  1  爆炸地冲击作用下介质物理力学参数[9-10]

    Table  1.   Physical and mechanical parameters of the medium under the ground impact of explosion[9-10]

    介质波速c/(m·s−1波阻抗ρc /(kg·m-2·s-1衰减指数n
    低相对密度松散干砂、黄土和砂砾1800.26×1063.00~3.50
    密实的不良级配干砂274~3960.57×1062.50~2.75
    相对密度接近100%的极密干砂4881.00×1062.50
    黏土、松散不良级配湿砂(含自由水)152~1830.28×106~0.34×1063.00
    湿的泥质黏土213~2740.41×106~0.57×1062.75~3.00
    砂质填土、回填土、潮湿黏土3000.50×1062.75~3.00
    密实的不良级配湿砂(含自由水)3050.50×1062.75
    潮湿黄土、粉土3000.63×1062.75~3.00
    地下水位以上的潮湿粉土5491.09×1062.50
    饱和土550~15001.09×106~3.05×1061.50~2.50
    下载: 导出CSV

    表  2  铺设泡沫混凝土分散层后结构层动态响应参数峰值衰减率

    Table  2.   Peak attenuation rate of dynamic response parameters of protection structure with foam concrete

    工况泡沫混凝土分散层装药量/kg结构层动态响应参数类型峰值衰减率/%数据来源
    密度/(kg·m−3厚度/cm
    14506~1044压力峰值79.1~89.9文献[14]
    247530.01454文献[15]
    3610150.248.9文献[13]
    478820~12030623~28.8文献[16]
    57995~1520.1~40.5文献[17]
    678840~120加速度峰值30.9~40.2文献[18]
    74506~1044速度峰值62.1~73.3文献[14]
    87995~157.3~13.3文献[17]
    9400200.025~0.03形变量峰值66.7~83.7文献[19]
    104752~40.01411.9~23.9文献[15]
    11799158.3文献[17]
    下载: 导出CSV
  • [1] 王年桥. 防护结构计算原理与设计 [M]. 南京: 中国人民解放军理工大学工程兵工程学院, 1998: 139–140.

    WANG N Q. Calculation principle of protective structure [M]. Nanjing: Engineering Institute of the Engineer Corps, PLA University of Science and Technology, 1998: 139–140.
    [2] ZHANG F L, POH L H, ZHANG M H. Resistance of cement-based materials against high-velocity small caliber deformable projectile impact [J]. International Journal of Impact Engineering, 2020, 144: 103629. DOI: 10.1016/j.ijimpeng.2020.103629.
    [3] SUN Y X, WANG X, JI C, et al. Experimental investigation on anti-penetration performance of polyurea-coated ASTM1045 steel plate subjected to projectile impact [J]. Defence Technology, 2021, 17(4): 1496–1513. DOI: 10.1016/j.dt.2020.08.005.
    [4] GURUPRASAD S, MUKHERJEE A. Layered sacrificial claddings under blast loading. Part I: analytical studies [J]. International Journal of Impact Engineering, 2000, 24(9): 957–973. DOI: 10.1016/S0734-743X(00)00004-X.
    [5] GURUPRASAD S, MUKHERJEE A. Layered sacrificial claddings under blast loading. Part Ⅱ: experimental studies [J]. International Journal of Impact Engineering, 2000, 24(9): 975–984. DOI: 10.1016/S0734-743X(00)00005-1.
    [6] 连志颖, 陆渝生, 邹同彬, 等. 用动光弹性法研究材料引入的分配层对应力波传播的影响 [J]. 实验力学, 2003, 18(4): 479–484. DOI: 10.3969/j.issn.1001-4888.2003.04.008.

    LIAN Z Y, LU Y S, ZOU T B, et al. A dynamic photoelastic analysis for the effect of different cushion layers on stress wave propagation in structure [J]. Journal of Experimental Mechanics, 2003, 18(4): 479–484. DOI: 10.3969/j.issn.1001-4888.2003.04.008.
    [7] ZHOU H Y, ZHAO Z Y, MA G W. Protection against blast load with cellular materials and structures [J]. International Journal of Aerospace and Lightweight Structures, 2012, 2(1): 53–76. DOI: 10.3850/S2010428612000220.
    [8] 钱七虎, 王明洋. 岩土中的冲击爆炸效应 [M]. 北京: 国防工业出版社, 2010: 1−43.

    QIAN Q H, WANG M Y. Impact and explosion effects in rock and soil [M]. Beijing: National Defense Industry Press, 2010: 1−43.
    [9] US Department of the Army. Fundamentals of protective design for conventional weapons: TM 5-855-1 [S]. Washington DC: US Department of the Army, 1986.
    [10] US Department of the Army. Structures to resist the effects of accidental explosions: TM5-1300 [S]. Washington: US Department of the Army, 1990.
    [11] 梁霍夫Г M. 岩土中爆炸动力学基础 [M]. 刘光寰, 王明洋, 译. 南京: 工程兵工程学院, 1993.
    [12] 刘飞, 任辉启, 王肖钧, 等. 典型分配层材料抗冲击性能对比研究 [J]. 防护工程, 2006, 28(5): 9–12.

    LIU F, REN H Q, WANG X J, et al. Comparative study on impact resistance of typical distribution layer materials [J]. Protective Engineering, 2006, 28(5): 9–12.
    [13] XUE Y L, TANG D G, LI Z Z, et al. A study on internal explosion testing of the “rigid-flexible-rigid” three-layer sealed structure [J]. Shock and Vibration, 2018, 2018: 1909872. DOI: 10.1155/2018/1909872.
    [14] ZHAO H L, YU H T, YUAN Y, et al. Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel structures [J]. Construction and Building Materials, 2015, 94: 710–718. DOI: 10.1016/j.conbuildmat.2015.07.076.
    [15] WANG X J, ZHANG X J, SONG L Y, et al. Mitigating confined blast response of buried steel box structure with foam concrete [J]. Thin-Walled Structures, 2021, 169: 108473. DOI: 10.1016/j.tws.2021.108473.
    [16] 袁英杰, 孙惠香, 陈卓. 爆炸荷载下泡沫混凝土减振层动力响应分析 [J]. 工程爆破, 2021, 27(4): 51–57. DOI: 10.19931/j.EB.20200167.

    YUAN Y J, SUN H X, CHEN Z. Analysis of dynamic response of foam concrete damping layer under explosive load [J]. Engineering Blasting, 2021, 27(4): 51–57. DOI: 10.19931/j.EB.20200167.
    [17] WANG G Y, DENG Z D, XU H L, et al. Application of foamed concrete backfill in improving antiexplosion performance of buried pipelines [J]. Journal of Materials in Civil Engineering, 2021, 33(4): 04021052. DOI: 10.1061/(ASCE)MT.1943-5533.0003630.
    [18] 李利莎, 谢清粮, 唐黎军, 等. 泡沫混凝土回填层减震性能影响因素分析 [J]. 爆破, 2015, 32(3): 166–171. DOI: 10.3963/j.issn.1001-487X.2015.03.030.

    LI L S, XIE Q L, TANG L J, et al. Influence factors of impact reduction performance of foamed concrete backfill layer [J]. Blasting, 2015, 32(3): 166–171. DOI: 10.3963/j.issn.1001-487X.2015.03.030.
    [19] TIAN X B, LI Q M, LU Z Y, et al. Experimental study of blast mitigation by foamed concrete [J]. International Journal of Protective Structures, 2016, 7(2): 179–192. DOI: 10.1177/2041419616633323.
    [20] 黄海健, 宫能平, 穆朝民, 等. 泡沫混凝土动态力学性能及本构关系 [J]. 建筑材料学报, 2020, 23(2): 466–472. DOI: 10.3969/j.issn.1007-9629.2020.02.033.

    HUANG H J, GONG N P, MU C M, et al. Dynamic mechanical properties and constitutive relation of foam concrete [J]. Journal of Building Materials, 2020, 23(2): 466–472. DOI: 10.3969/j.issn.1007-9629.2020.02.033.
    [21] BLANC L, SCHUNCK T, ECKENFELS D. Sacrificial cladding with brittle materials for blast protection [J]. Materials, 2021, 14(14): 3980. DOI: 10.3390/ma14143980.
    [22] 赵凯, 王肖钧, 刘飞, 等. 多孔材料中应力波的传播 [J]. 爆炸与冲击, 2011, 31(1): 107–112. DOI: 10.11883/1001-1455(2011)01-0107-06.

    ZHAO K, WANG X J, LIU F, et al. Propagation of stress wave in porous material [J]. Explosion and Shock Waves, 2011, 31(1): 107–112. DOI: 10.11883/1001-1455(2011)01-0107-06.
    [23] NIAN W M, SUBRAMANIAM K V L, ANDREOPOULOS Y. Experimental investigation on blast response of cellular concrete [J]. International Journal of Impact Engineering, 2016, 96: 105–115. DOI: 10.1016/j.ijimpeng.2016.05.021.
    [24] 赵武胜, 陈卫忠, 马少森, 等. 泡沫混凝土隧道减震层减震机制 [J]. 岩土力学, 2018, 39(3): 1027–1036. DOI: 10.16285/j.rsm.2016.0507.

    ZHAO W S, CHEN W Z, MA S S, et al. Isolation effect of foamed concrete layer on the seismic responses of tunnel [J]. Rock and Soil Mechanics, 2018, 39(3): 1027–1036. DOI: 10.16285/j.rsm.2016.0507.
    [25] WANG B, WANG P, CHEN Y S, et al. Blast responses of CFRP strengthened autoclaved aerated cellular concrete panels [J]. Construction and Building Materials, 2017, 157: 226–236. DOI: 10.1016/j.conbuildmat.2017.09.064.
    [26] CHEN Y S, WANG B, ZHANG B, et al. Polyurea coating for foamed concrete panel: an efficient way to resist explosion [J]. Defence Technology, 2020, 16(1): 136–149. DOI: 10.1016/j.dt.2019.06.010.
    [27] HAN B, XIANG T Y. Axial compressive stress-strain relation and Poisson effect of structural lightweight aggregate concrete [J]. Construction and Building Materials, 2017, 146: 338–343. DOI: 10.1016/j.conbuildmat.2017.04.101.
    [28] ABBAS A, ADIL M, AHMAD N, et al. Behavior of reinforced concrete sandwiched panels (RCSPs) under blast load [J]. Engineering Structures, 2019, 181: 476–490. DOI: 10.1016/j.engstruct.2018.12.051.
    [29] CUI C C, HUANG Q, LI D B, et al. Stress-strain relationship in axial compression for EPS concrete [J]. Construction and Building Materials, 2016, 105: 377–383. DOI: 10.1016/j.conbuildmat.2015.12.159.
    [30] BABU D S, BABU K G, TIONG-HUAN W. Effect of polystyrene aggregate size on strength and moisture migration characteristics of lightweight concrete [J]. Cement and Concrete Composites, 2006, 28(6): 520–527. DOI: 10.1016/j.cemconcomp.2006.02.018.
    [31] LIU N, CHEN B. Experimental study of the influence of EPS particle size on the mechanical properties of EPS lightweight concrete [J]. Construction and Building Materials, 2014, 68: 227–232. DOI: 10.1016/j.conbuildmat.2014.06.062.
    [32] BABU K G, BABU D S. Behaviour of lightweight expanded polystyrene concrete containing silica fume [J]. Cement and Concrete Research, 2003, 33(5): 755–762. DOI: 10.1016/S0008-8846(02)01055-4.
    [33] 胡俊. EPS混凝土力学性能及抗爆、抗震性能研究 [D]. 合肥: 中国科学技术大学, 2012.

    HU J. Research on mechanical properties and anti-explosion、seismic performance of EPS concrete [D]. Hefei: University of Science and Technology of China, 2012.
    [34] 白二雷, 许金余, 高志刚. 冲击荷载作用下EPS混凝土动态性能研究 [J]. 振动与冲击, 2012, 31(13): 53–57. DOI: 10.13465/j.cnki.jvs.2012.13.010.

    BAI E L, XU J Y, GAO Z G. Dynamic mechanical property of expanded polystyrene concrete under impact loading [J]. Journal of Vibration and Shock, 2012, 31(13): 53–57. DOI: 10.13465/j.cnki.jvs.2012.13.010.
    [35] LIU Y P, MA D P, JIANG Z Y, et al. Dynamic response of expanded polystyrene concrete during low speed impact [J]. Construction and Building Materials, 2016, 122: 72–80. DOI: 10.1016/j.conbuildmat.2016.06.059.
    [36] 巫绪涛, 胡俊, 谢思发. EPS混凝土的动态劈裂强度和能量耗散 [J]. 爆炸与冲击, 2013, 33(4): 369–374. DOI: 10.11883/1001-1455(2013)04-0369-06.

    WU X T, HU J, XIE S F. Dynamic splitting-tensile strength and energy dissipation property of EPS concrete [J]. Explosion and Shock Waves, 2013, 33(4): 369–374. DOI: 10.11883/1001-1455(2013)04-0369-06.
    [37] 石文博, 缪林昌, 王佳奇, 等. 循环荷载作用下不同配比EPS轻质混凝土阻尼比变化规律 [J]. 东南大学学报(自然科学版), 2016, 46(1): 179–183. DOI: 10.3969/j.issn.1001-0505.2016.01.029.

    SHI W B, MIAO L C, WANG J Q, et al. Damping behavior of lightweight expanded polystyrene concrete under dynamic cyclic loading [J]. Journal of Southeast University (Natural Science Edition), 2016, 46(1): 179–183. DOI: 10.3969/j.issn.1001-0505.2016.01.029.
    [38] COLANGELO F, ROVIELLO G, RICCIOTTI L, et al. Mechanical and thermal properties of lightweight geopolymer composites [J]. Cement and Concrete Composites, 2018, 86: 266–272. DOI: 10.1016/j.cemconcomp.2017.11.016.
    [39] 江水德, 任辉启, 赵大勇, 等. 空气夹层结构抗爆炸局部破坏设计方法 [J]. 防护工程, 2004, 26(1): 1–6.

    JIANG S D, REN H Q, ZHAO D Y, et al. Design method for anti-explosion local damage of air sandwich structure [J]. Protective Engineering, 2004, 26(1): 1–6.
    [40] YU X, CHEN L, FANG Q, et al. Blast mitigation effect of the layered concrete structure with an air gap: a numerical approach [J]. International Journal of Protective Structures, 2018, 9(4): 432–460. DOI: 10.1177/2041419618766951.
    [41] 王新武, 卫明山, 丁巧爱, 等. 支撑式薄板夹层结构抗爆性能试验研究 [J]. 武汉理工大学学报, 2010, 32(9): 309–313. DOI: 10.3963/j.issn.1671-4431.2010.09.071.

    WANG X W, WEI M S, DING Q A, et al. Experimental study on thin plates sandwich structure with braced subjected to blast loads [J]. Journal of Wuhan University of Technology, 2010, 32(9): 309–313. DOI: 10.3963/j.issn.1671-4431.2010.09.071.
    [42] 颜海春, 艾德武, 袁正如, 等. 空气隔层成层式结构抗常规武器设计荷载分析 [J]. 地下空间与工程学报, 2012, 8(4): 802–806,856. DOI: 10.3969/j.issn.1673-0836.2012.04.025.

    YAN H C, AI D W, YUAN Z R, et al. On the load analysis of resistance to conventional weapons under the circumstances of air buffer application [J]. Chinese Journal of Underground Space and Engineering, 2012, 8(4): 802–806,856. DOI: 10.3969/j.issn.1673-0836.2012.04.025.
    [43] 方建辉, 刘元, 周兆鹏, 等. 遮弹板不贯穿情况下爆炸冲击波在空气分散层中的传播规律研究 [J]. 防护工程, 2012, 34(2): 14–19.

    FANG J H, LIU Y, ZHOU Z P, et al. Experimental research on propagation rule of the explosive shock wave in air dispersion layer with burster layer not perforated [J]. Protective Engineering, 2012, 34(2): 14–19.
    [44] 颜海春, 方秦, 范俊余, 等. 成层式结构中顶板上常规武器爆炸动荷载的数值分析 [J]. 防护工程, 2007, 29(1): 40–44.

    YAN H C, FANG Q, FAN J Y, et al. Numerical analysis of dynamic loads of conventional weapons on top slabs in multilayer structures [J]. Protective Engineering, 2007, 29(1): 40–44.
    [45] 黄旭. 增加缓冲层的人防工程成层式防护结构抗冲击性能研究 [D]. 南京: 东南大学, 2019. DOI: 10.27014/d.cnki.gdnau.2019.001422.

    HUANG X. Study on impact resistance of layered protection structure for civil air defense engineering with buffer layer [D]. Nanjing: Southeast University, 2019. DOI: 10.27014/d.cnki.gdnau.2019.001422.
    [46] 李永池, 姚磊, 沈俊, 等. 空穴的绕射隔离效应和对后方应力波的削弱作用 [J]. 爆炸与冲击, 2005, 25(3): 193–199. DOI: 10.11883/1001-1455(2005)03-0193-07.

    LI Y C, YAO L, SHEN J, et al. Insulation effect of the cavity on stress wave [J]. Explosion and Shock Waves, 2005, 25(3): 193–199. DOI: 10.11883/1001-1455(2005)03-0193-07.
    [47] 穆朝民, 齐娟. 地下防护层中空穴形状对爆炸波衰减作用的影响 [J]. 岩土力学, 2011, 32(12): 3773–3779. DOI: 10.3969/j.issn.1000-7598.2011.12.039.

    MU C M, QI J. Attenuation effects of cavity shape on blast wave in underground defense layer [J]. Rock and Soil Mechanics, 2011, 32(12): 3773–3779. DOI: 10.3969/j.issn.1000-7598.2011.12.039.
    [48] WANG Z L, WANG J G, LI Y C, et al. Attenuation effect of artificial cavity on air-blast waves in an intelligent defense layer [J]. Computers and Geotechnics, 2006, 33(2): 132–141. DOI: 10.1016/j.compgeo.2006.02.002.
    [49] LI X Y, LI Y C, ZHAO K, et al. Mechanical properties of sialic foamed ceramic and applications in defense structure [J]. Chinese Physics Letters, 2014, 31(8): 086201. DOI: 10.1088/0256-307X/31/8/086201.
    [50] 任新见, 张庆明, 刘瑞朝. 成层式结构泡沫空心球分配层抗爆性能试验研究 [J]. 振动与冲击, 2015, 34(21): 100–104. DOI: 10.13465/j.cnki.jvs.2015.21.018.

    REN X J, ZHANG Q M, LIU R C. Tests for anti-blast performance of layered structures with hollow foam spheres as distribution layers [J]. Journal of Vibration and Shock, 2015, 34(21): 100–104. DOI: 10.13465/j.cnki.jvs.2015.21.018.
    [51] 赵凯, 罗文超, 王肖钧. 粘土质泡沫陶瓷力学性能实验研究 [J]. 振动与冲击, 2012, 31(21): 50–53,67. DOI: 10.3969/j.issn.1000-3835.2012.21.011.

    ZHAO K, LUO W C, WANG X J. Tests for mechanical behavior of clay ceramic foam [J]. Journal of Vibration and Shock, 2012, 31(21): 50–53,67. DOI: 10.3969/j.issn.1000-3835.2012.21.011.
    [52] 孙晓旺, 李永池, 叶中豹, 等. 新型空壳颗粒材料在人防工程中应用的实验研究 [J]. 爆炸与冲击, 2017, 37(4): 643–648. DOI: 10.11883/1001-1455(2017)04-0643-06.

    SUN X W, LI Y C, YE Z B, et al. Experimental study of a novel shelly cellular material used in civil defense engineering [J]. Explosion and Shock Waves, 2017, 37(4): 643–648. DOI: 10.11883/1001-1455(2017)04-0643-06.
    [53] 张春晓, 何翔, 刘国权, 等. 泡沫陶瓷球壳与高黏弹沥青热压复合板材研制及其抗爆性能试验研究 [J]. 工程力学, 2017, 34(S1): 320–325. DOI: 10.6052/j.issn.1000-4750.2016.03.S029.

    ZHANG C X, HE X, LIU G Q, et al. The development of ceramic foam spherical shell with high viscoelastic asphalt hot pressing composite plate and research on antiknock performance test [J]. Engineering Mechanics, 2017, 34(S1): 320–325. DOI: 10.6052/j.issn.1000-4750.2016.03.S029.
    [54] SEVIN E. Ground shock isolation of buried structures: AFSWC-TR-59-47 [R]. New Mexico: Air Force Special Weapons Center, Kirtland Air Force Base, 1959.
    [55] 徐畅, 崔传安, 王在晖. 聚氨酯泡沫分配层在成层式防护层中的数值模拟 [J]. 防护工程, 2016, 38(6): 44–47.

    XU C, CUI C A, WANG Z H. Numerical simulation of the polyurethane foam distribution layer in the multilayer protective layer [J]. Protective Engineering, 2016, 38(6): 44–47.
    [56] MAZEK S A, MOSTAFA A A. Impact of a shock wave on a structure strengthened by rigid polyurethane foam [J]. Structural Engineering and Mechanics, 2013, 48(4): 569–585. DOI: 10.12989/sem.2013.48.4.569.
    [57] DE A, MORGANTE A N, ZIMMIE T F. Numerical and physical modeling of geofoam barriers as protection against effects of surface blast on underground tunnels [J]. Geotextiles and Geomembranes, 2016, 44(1): 1–12. DOI: 10.1016/j.geotexmem.2015.06.008.
    [58] 陈网桦, 冯伟, 彭金华, 等. 空气及半硬质聚氨酯泡沫塑料中爆炸波传播特性的研究 [J]. 火炸药学报, 2001, 24(4): 41–42,45. DOI: 10.3969/j.issn.1007-7812.2001.04.020.

    CHEN W H, FENG W, PENG J H, et al. Experimental investigation of propagation properties of blast waves in air and in semi-rigid polyurethane foam [J]. Chinese Journal of Explosives & Propellants, 2001, 24(4): 41–42,45. DOI: 10.3969/j.issn.1007-7812.2001.04.020.
    [59] MOSTAFA H E, EL-DAKHAKHNI W W, MEKKY W F. Use of reinforced rigid polyurethane foam for blast hazard mitigation [J]. Journal of Reinforced Plastics and Composites, 2010, 29(20): 3048–3057. DOI: 10.1177/0731684410363184.
    [60] CODINA R, AMBROSINI D, DE BORBÓN F. Alternatives to prevent the failure of RC members under close-in blast loadings [J]. Engineering Failure Analysis, 2016, 60: 96–106. DOI: 10.1016/j.engfailanal.2015.11.038.
    [61] SHERWOOD B S. Underground explosion test [J]. The Military Engineer, 1951, 43(294): 268–275.
    [62] VAILE JR R B. Isolation of structures from ground shock: operation plumbbob: WT-1424 [R]. Menlo Park: Stanford Research Institute, 1957.
    [63] ZHANG B, NIAN X Z, JIN F N, et al. Failure analyses of flexible ultra-high molecular weight polyethylene (UHMWPE) fiber reinforced anti-blast wall under explosion [J]. Composite Structures, 2018, 184: 759–774. DOI: 10.1016/j.compstruct.2017.10.037.
    [64] CHEN Y, CHEN F, DU Z P, et al. Protective effect of polymer coating on the circular steel plate response to near-field underwater explosions [J]. Marine Structures, 2015, 40: 247–266. DOI: 10.1016/j.marstruc.2014.11.005.
    [65] CHEN Y, ZHANG Z Y, WANG Y, et al. Crush dynamics of square honeycomb thin rubber wall [J]. Thin-Walled Structures, 2009, 47(12): 1447–1456. DOI: 10.1016/j.tws.2009.07.007.
    [66] CHEN Y, TONG Z P, HUA H X, et al. Experimental investigation on the dynamic response of scaled ship model with rubber sandwich coatings subjected to underwater explosion [J]. International Journal of Impact Engineering, 2009, 36(2): 318–328. DOI: 10.1016/j.ijimpeng.2007.12.015.
    [67] CHEN Y, WANG Y, ZHANG Z Y, et al. Experimental research on the responses of neoprene coated cylinder subjected to underwater explosions [J]. Journal of Offshore Mechanics and Arctic Engineering, 2013, 135(1): 011102. DOI: 10.1115/1.4006761.
    [68] 金泽宇. 抗冲覆盖层水下爆炸计算方法研究 [D]. 上海: 上海交通大学, 2017.

    JIN Z Y. Computational method study on shock mitigation coatings subjected to underwater explosion [D]. Shanghai: Shanghai Jiaotong University, 2017.
    [69] 梅松华, 盛谦, 崔臻, 等. 黏弹性阻尼减震层的吸能特性试验研究 [J]. 岩土工程学报, 2022, 44(6): 997–1005. DOI: 10.11779/CJGE202206003.

    MEI S H, SHENG Q, CUI Z, et al. Experimental study on energy absorption property of viscoelasticity damping layer [J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 997–1005. DOI: 10.11779/CJGE202206003.
    [70] 高光发, 李永池, 赵凯, 等. 柱壳结构的弥散效应及对应力波的削弱作用 [J]. 振动与冲击, 2011, 30(12): 195–200. DOI: 10.3969/j.issn.1000-3835.2011.12.038.

    GAO G F, LI Y C, ZHAO K, et al. Dispersion and attenuation effects on stress waves in defense layer with cylindrical shell embedded [J]. Journal of Vibration and Shock, 2011, 30(12): 195–200. DOI: 10.3969/j.issn.1000-3835.2011.12.038.
    [71] 杨旭东, 许佳丽, 邹田春, 等. 泡沫铝填充金属薄壁管复合结构的研究进展 [J]. 材料导报, 2019, 33(21): 3637–3643. DOI: 10.11896/cldb.18080101.

    YANG X D, XU J L, ZOU T C, et al. Advances in the composite structure of aluminum foam filled metal thin-walled tube [J]. Materials Reports, 2019, 33(21): 3637–3643. DOI: 10.11896/cldb.18080101.
    [72] KARAGIOZOVA D, JONES N. On the mechanics of the global bending collapse of circular tubes under dynamic axial load: dynamic buckling transition [J]. International Journal of Impact Engineering, 2008, 35(5): 397–424. DOI: 10.1016/j.ijimpeng.2007.04.002.
    [73] 吴明泽, 张晓伟, 张庆明. 材料和内边界约束对薄壁圆管轴向压缩吸能特性的影响研究 [J]. 应用力学学报, 2020, 37(4): 1415–1421. DOI: 10.11776/cjam.37.04.D037.

    WU M Z, ZHANG X W, ZHANG Q M. Effects of material properties and inner-constraints on the energy absorption of thin-walled circular tube under axial compression [J]. Chinese Journal of Applied Mechanics, 2020, 37(4): 1415–1421. DOI: 10.11776/cjam.37.04.D037.
    [74] GUILLOW S R, LU G, GRZEBIETA R H. Quasi-static axial compression of thin-walled circular aluminium tubes [J]. International Journal of Mechanical Sciences, 2001, 43(9): 2103–2123. DOI: 10.1016/S0020-7403(01)00031-5.
    [75] WU S Y, LI G Y, SUN G Y, et al. Crashworthiness analysis and optimization of sinusoidal corrugation tube [J]. Thin-Walled Structures, 2016, 105: 121–134. DOI: 10.1016/j.tws.2016.03.029.
    [76] SALEHGHAFFARI S, TAJDARI M, PANAHI M, et al. Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading [J]. Thin-Walled Structures, 2010, 48(6): 379–390. DOI: 10.1016/j.tws.2010.01.012.
    [77] 高光发, 李永池, 黄瑞源, 等. 平面冲击载荷下不同形式含柱壳结构的防护性能 [J]. 土木建筑与环境工程, 2012, 34(1): 7–11,28. DOI: 10.11835/j.issn.1674-4764.2012.01.003.

    GAO G F, LI Y C, HUANG R Y, et al. Protection performance of the various structures with cylindrical shells under plane impact loadings [J]. Journal of Civil and Environmental Engineering, 2012, 34(1): 7–11,28. DOI: 10.11835/j.issn.1674-4764.2012.01.003.
    [78] ASHBY M F, EVANS T, FLECK N A, et al. Metal foams: a design guide [M]. Oxford: Butterworth-Heinemann, 2000: 119.
    [79] HANSSEN A G, ENSTOCK L, LANGSETH M. Close-range blast loading of aluminium foam panels [J]. International Journal of Impact Engineering, 2002, 27(6): 593–618. DOI: 10.1016/S0734-743X(01)00155-5.
    [80] 余同希, 卢国兴, 张雄. 能量吸收: 结构与材料的力学行为和塑性分析 [M]. 北京: 科学出版社, 2019: 240−243.

    YU T X, LU G X, ZHANG X. Energy absorption: mechanical behavior and plasticity analysis of structures and materials [M]. Beijing: Science Press, 2019: 240−243.
    [81] 王永刚, 胡时胜, 王礼立. 爆炸荷载下泡沫铝材料中冲击波衰减特性的实验和数值模拟研究 [J]. 爆炸与冲击, 2003, 23(6): 516–522.

    WANG Y G, HU S S, WANG L L. Shock attenuation in aluminum foams under explosion loading [J]. Explosion and Shock Waves, 2003, 23(6): 516–522.
    [82] 程和法, 黄笑梅, 薛国宪, 等. 冲击波在泡沫铝中的传播和衰减特性 [J]. 材料科学与工程学报, 2004, 22(1): 78–81. DOI: 10.3969/j.issn.1673-2812.2004.01.021.

    CHENG H F, HUANG X M, XUE G X, et al. Propagation and attenuation characteristic of shock wave in aluminum foam [J]. Journal of Materials Science & Engineering, 2004, 22(1): 78–81. DOI: 10.3969/j.issn.1673-2812.2004.01.021.
    [83] XIA Y, WU C Q, LI Z X. Optimized design of foam cladding for protection of reinforced concrete members under blast loading [J]. Journal of Structural Engineering, 2015, 141(9): 06014010. DOI: 10.1061/(asce)st.1943-541x.0001190.
    [84] WU C Q, SHEIKH H. A finite element modelling to investigate the mitigation of blast effects on reinforced concrete panel using foam cladding [J]. International Journal of Impact Engineering, 2013, 55: 24–33. DOI: 10.1016/j.ijimpeng.2012.11.006.
    [85] KOSTOPOULOS V, KALIMERIS G D, GIANNAROS E. Blast protection of steel reinforced concrete structures using composite foam-core sacrificial cladding [J]. Composites Science and Technology, 2022: 109330 [2022-02-13]. DOI: 10.1016/j.compscitech.2022.109330.
    [86] XIA Y, WU C Q, ZHANG F R, et al. Numerical analysis of foam-protected RC members under blast loads [J]. International Journal of Protective Structures, 2014, 5(4): 367–390. DOI: 10.1260/2041-4196.5.4.367.
    [87] WU C Q, ZHOU Y. Simplified analysis of foam cladding protected reinforced concrete slabs against blast loadings [J]. International Journal of Protective Structures, 2011, 2(3): 351–365. DOI: 10.1260/2041-4196.2.3.351.
    [88] 高海莹, 刘中宪, 杨烨凯, 等. 泡沫铝防护钢筋混凝土板的抗爆性能 [J]. 爆炸与冲击, 2019, 39(2): 023101. DOI: 10.11883/bzycj-2018-0284.

    GAO H Y, LIU Z X, YANG Y K, et al. Blast-resistant performance of aluminum foam-protected reinforced concrete slabs [J]. Explosion and Shock Waves, 2019, 39(2): 023101. DOI: 10.11883/bzycj-2018-0284.
    [89] LI Z Q, ZHANG J J, FAN J H, et al. On crushing response of the three-dimensional closed-cell foam based on Voronoi model [J]. Mechanics of Materials, 2014, 68: 85–94. DOI: 10.1016/j.mechmat.2013.08.009.
    [90] MA G W, YE Z Q. Analysis of foam claddings for blast alleviation [J]. International Journal of Impact Engineering, 2007, 34(1): 60–70. DOI: 10.1016/j.ijimpeng.2005.10.005.
    [91] ZHAO S Y, SIQUEIRA G, DRDOVA S, et al. Additive manufacturing of silica aerogels [J]. Nature, 2020, 584(7821): 387–392. DOI: 10.1038/s41586-020-2594-0.
    [92] KATTI A, SHIMPI N, ROY S, et al. Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels [J]. Chemistry of Materials, 2006, 18(2): 285–296. DOI: 10.1021/cm0513841.
    [93] LUO H, CHURU G, FABRIZIO E F, et al. Synthesis and characterization of the physical, chemical and mechanical properties of isocyanate-crosslinked vanadia aerogels [J]. Journal of Sol-Gel Science and Technology, 2008, 48(1): 113–134. DOI: 10.1007/s10971-008-1788-y.
    [94] 杨杰, 李树奎, 闫丽丽, 等. 二氧化硅气凝胶的防爆震性能及机理研究 [J]. 物理学报, 2010, 59(12): 8934–8940. DOI: 10.7498/aps.59.8934.

    YANG J, LI S K, YAN L L, et al. Protective performance and protective mechanism of SiO2 aerogel under explosive loading [J]. Acta Physica Sinica, 2010, 59(12): 8934–8940. DOI: 10.7498/aps.59.8934.
    [95] 杨杰, 李树奎, 王富耻. 以气凝胶为夹层的复合结构抗弹性能研究 [J]. 兵工学报, 2012, 33(8): 921–926.

    YANG J, LI S K, WANG F C. Research on the anti-bullet performance of composite structure with aerogel interlayer [J]. Acta Armamentarii, 2012, 33(8): 921–926.
    [96] 王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005.
    [97] RANDALL J P, MEADOR M A B, JANA S C. Tailoring mechanical properties of aerogels for aerospace applications [J]. Acs Applied Materials & Interfaces, 2011, 3(3): 613–626. DOI: 10.1021/am200007n.
    [98] 李砚召, 王肖钧, 吴祥云, 等. 分配层分层结构对核爆炸荷载的防护效果试验研究 [J]. 中国科学技术大学学报, 2009, 39(9): 931–935.

    LI Y Z, WANG X J, WU X Y, et al. Test study on layered structure’s defense effect of distribution layer against nuclear explosive loadings [J]. Journal of University of Science and Technology of China, 2009, 39(9): 931–935.
    [99] 王超申, 康道辉, 游世辉, 等. 爆炸载荷下地下巷道分配层结构的对比分析 [J]. 计算力学学报, 2020, 37(3): 377–383. DOI: 10.7511/jslx20190506001.

    WANG C S, KANG D H, YOU S H, et al. Comparative analysis of distribution layer structure of underground tunnels under explosive loading [J]. Chinese Journal of Computational Mechanics, 2020, 37(3): 377–383. DOI: 10.7511/jslx20190506001.
    [100] 张勇. 聚氨酯泡沫铝复合结构抗爆吸能试验及数值模拟分析 [J]. 爆炸与冲击, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.

    ZHANG Y. Testing and numerical simulation of the antiknock energy absorption of polyurethane foam aluminum composite structure [J]. Explosion and Shock Waves, 2022, 42(4): 045101. DOI: 10.11883/bzycj-2021-0182.
    [101] 毛勇建, 李玉龙. 杆中嵌入薄板的应力波传播行为 [J]. 固体力学学报, 2008, 29(3): 239–244. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2008.03.004.

    MAO Y J, LI Y L. Stress wave propagation through a thin plate sandwiched between two bars [J]. Chinese Journal of Solid Mechanics, 2008, 29(3): 239–244. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2008.03.004.
    [102] MAHBOD M, ASGARI M. Energy absorption analysis of a novel foam-filled corrugated composite tube under axial and oblique loadings [J]. Thin-Walled Structures, 2018, 129: 58–73. DOI: 10.1016/j.tws.2018.03.023.
    [103] LI G Y, ZHANG Z S, SUN G Y, et al. Crushing analysis and multiobjective optimization for functionally graded foam-filled tubes under multiple load cases [J]. International Journal of Mechanical Sciences, 2014, 89: 439–452. DOI: 10.1016/j.ijmecsci.2014.10.001.
    [104] HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static and dynamic crushing of square aluminium extrusions with aluminium foam filler [J]. International Journal of Impact Engineering, 2000, 24(4): 347–383. DOI: 10.1016/S0734-743X(99)00169-4.
    [105] ELAHI S A, ROUZEGAR J, NIKNEJAD A, et al. Theoretical study of absorbed energy by empty and foam-filled composite tubes under lateral compression [J]. Thin-Walled Structures, 2017, 114: 1–10. DOI: 10.1016/j.tws.2017.01.029.
    [106] DARVIZEH A, DARVIZEH M, ANSARI R, et al. Effect of low density, low strength polyurethane foam on the energy absorption characteristics of circumferentially grooved thick-walled circular tubes [J]. Thin-Walled Structures, 2013, 71: 81–90. DOI: 10.1016/j.tws.2013.04.014.
    [107] TOKSOY A K, GÜDEN M. Partial Al foam filling of commercial 1050H14 Al crash boxes: the effect of box column thickness and foam relative density on energy absorption [J]. Thin-Walled Structures, 2010, 48(7): 482–494. DOI: 10.1016/j.tws.2010.02.002.
    [108] IMBALZANO G, LINFORTH S, NGO T D, et al. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs [J]. Composite Structures, 2018, 183: 242–261. DOI: 10.1016/j.compstruct.2017.03.018.
    [109] ZHU F, WANG Z H, LU G X, et al. Analytical investigation and optimal design of sandwich panels subjected to shock loading [J]. Materials & Design, 2009, 30(1): 91–100. DOI: 10.1016/j.matdes.2008.04.027.
    [110] FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics, 2004, 71(3): 386–401. DOI: 10.1115/1.1629109.
    [111] LI Y, REN X B, ZHANG X Q, et al. Deformation and failure modes of aluminum foam-cored sandwich plates under air-blast loading [J]. Composite Structures, 2021, 258: 113317. DOI: 10.1016/j.compstruct.2020.113317.
    [112] HOU S J, SHU C F, ZHAO S Y, et al. Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading [J]. Composite Structures, 2015, 126: 371–385. DOI: 10.1016/j.compstruct.2015.02.039.
    [113] CHEN D, JING L, YANG F. Optimal design of sandwich panels with layered-gradient aluminum foam cores under air-blast loading [J]. Composites Part B:Engineering, 2019, 166: 169–186. DOI: 10.1016/j.compositesb.2018.11.125.
    [114] 李勇, 程远胜, 张攀, 等. 空中爆炸载荷下梯度波纹夹层板抗爆性能仿真研究 [J]. 兵工学报, 2017, 38(6): 1131–1139. DOI: 10.3969/j.issn.1000-1093.2017.06.012.

    LI Y, CHENG Y S, ZHANG P, et al. Numerical research on blast-resistant performance of graded corrugated sandwich plates under air blast loading [J]. Acta Armamentarii, 2017, 38(6): 1131–1139. DOI: 10.3969/j.issn.1000-1093.2017.06.012.
    [115] LI Z J, CHEN W S, HAO H. Blast mitigation performance of cladding using square dome-shape kirigami folded structure as core [J]. International Journal of Mechanical Sciences, 2018, 145: 83–95. DOI: 10.1016/j.ijmecsci.2018.06.035.
    [116] CHEN G C, CHENG Y S, ZHANG P, et al. Blast resistance of metallic double arrowhead honeycomb sandwich panels with different core configurations under the paper tube-guided air blast loading [J]. International Journal of Mechanical Sciences, 2021, 201: 106457. DOI: 10.1016/j.ijmecsci.2021.106457.
    [117] XU F X, ZHANG X, ZHANG H. A review on functionally graded structures and materials for energy absorption [J]. Engineering Structures, 2018, 171: 309–325. DOI: 10.1016/j.engstruct.2018.05.094.
    [118] HOU S J, HAN X, SUN G Y, et al. Multiobjective optimization for tapered circular tubes [J]. Thin-Walled Structures, 2011, 49(7): 855–863. DOI: 10.1016/j.tws.2011.02.010.
    [119] ZHANG X, ZHANG H, WANG Z. Bending collapse of square tubes with variable thickness [J]. International Journal of Mechanical Sciences, 2016, 106: 107–116. DOI: 10.1016/j.ijmecsci.2015.12.006.
    [120] LAKES R. Materials with structural hierarchy [J]. Nature, 1993, 361(6412): 511–515. DOI: 10.1038/361511a0.
    [121] MA G W, YE Z Q. Energy absorption of double-layer foam cladding for blast alleviation [J]. International Journal of Impact Engineering, 2007, 34(2): 329–347. DOI: 10.1016/j.ijimpeng.2005.07.012.
    [122] 张鹏飞, 刘志芳, 李世强. 内爆炸载荷下梯度泡沫铝夹芯管的动态响应 [J]. 爆炸与冲击, 2020, 40(7): 071402. DOI: 10.11883/bzycj-2019-0418.

    ZHANG P F, LIU Z F, LI S Q. Dynamic response of sandwich tubes with graded foam aluminum cores under internal blast loading [J]. Explosion and Shock Waves, 2020, 40(7): 071402. DOI: 10.11883/bzycj-2019-0418.
    [123] ZHOU J, GUAN Z W, CANTWELL W J. The impact response of graded foam sandwich structures [J]. Composite Structures, 2013, 97: 370–377. DOI: 10.1016/j.compstruct.2012.10.037.
    [124] WANG E H, GARDNER N, SHUKLA A. The blast resistance of sandwich composites with stepwise graded cores [J]. International Journal of Solids and Structures, 2009, 46(18/19): 3492–3502. DOI: 10.1016/j.ijsolstr.2009.06.004.
    [125] LIANG M Z, LI Z B, LU F Y, et al. Theoretical and numerical investigation of blast responses of continuous-density graded cellular materials [J]. Composite Structures, 2017, 164: 170–179. DOI: 10.1016/j.compstruct.2016.12.065.
    [126] LAN X K, FENG S S, HUANG Q, et al. Blast response of continuous-density graded cellular material based on the 3D Voronoi model [J]. Defence Technology, 2018, 14(5): 433–440. DOI: 10.1016/j.dt.2018.06.003.
    [127] 蔡正宇, 丁圆圆, 王士龙, 等. 梯度多胞牺牲层的抗爆炸分析 [J]. 爆炸与冲击, 2017, 37(3): 396–404. DOI: 10.11883/1001-1455(2017)03-0396-09.

    CAI Z Y, DING Y Y, WANG S L, et al. Anti-blast analysis of graded cellular sacrificial cladding [J]. Explosion and Shock Waves, 2017, 37(3): 396–404. DOI: 10.11883/1001-1455(2017)03-0396-09.
    [128] 周宏元, 贾昆程, 王小娟, 等. 负泊松比三明治结构填充泡沫混凝土的面内压缩性能 [J]. 复合材料学报, 2020, 37(8): 2005–2014. DOI: 10.13801/j.cnki.fhclxb.20191207.001.

    ZHOU H Y, JIA K C, WANG X J, et al. In-plane compression properties of negative Poisson's ratio sandwich structure filled with foam concrete [J]. Acta Materiae Compositae Sinica, 2020, 37(8): 2005–2014. DOI: 10.13801/j.cnki.fhclxb.20191207.001.
    [129] 杨德庆, 吴秉鸿, 张相闻. 星型负泊松比超材料防护结构抗爆抗冲击性能研究 [J]. 爆炸与冲击, 2019, 39(6): 065102. DOI: 10.11883/bzycj-2018-0060.

    YANG D Q, WU B H, ZHANG X W. Anti-explosion and shock resistance performance of sandwich defensive structure with star-shaped auxetic material core [J]. Explosion and Shock Waves, 2019, 39(6): 065102. DOI: 10.11883/bzycj-2018-0060.
    [130] QI C, REMENNIKOV A, PEI L Z, et al. Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: experimental tests and numerical simulations [J]. Composite Structures, 2017, 180: 161–178. DOI: 10.1016/j.compstruct.2017.08.020.
    [131] KEARSLEY E P, WAINWRIGHT P J. The effect of porosity on the strength of foamed concrete [J]. Cement and Concrete Research, 2002, 32(2): 233–239. DOI: 10.1016/S0008-8846(01)00665-2.
    [132] 刘飞, 王辉明, 晏麓晖, 等. 炸弹邻近爆炸对浅埋结构人防工程的毁伤效应 [J]. 兵工学报, 2021, 42(3): 625–632. DOI: 10.3969/j.issn.1000-1093.2021.03.019.

    LIU F, WANG H M, YAN L H, et al. Damage effect of shallow buried civil air defense engineering structures under nearby blast loading [J]. Acta Armamentarii, 2021, 42(3): 625–632. DOI: 10.3969/j.issn.1000-1093.2021.03.019.
    [133] ICHINO H, BEPPU M, WILLIAMSON E B, et al. Effects of EPS density on blast mitigation performance in underground protective structures [J]. International Journal of Impact Engineering, 2022, 164: 104189. DOI: 10.1016/j.ijimpeng.2022.104189.
    [134] 柳厚祥, 郑智雄. 高地应力软岩公路隧道泡沫混凝土卸压机理及支护结构研究 [J]. 中国公路学报, 2016, 29(11): 122–129. DOI: 10.3969/j.issn.1001-7372.2016.11.016.

    LIU H X, ZHENG Z X. Research on mechanism of pressure relief and supporting structure of foam concrete in high geostress soft rock highway tunnel [J]. China Journal of Highway and Transport, 2016, 29(11): 122–129. DOI: 10.3969/j.issn.1001-7372.2016.11.016.
    [135] JALAL M D, TANVEER A, JAGDEESH K, et al. Foam concrete [J]. International Journal of Civil Engineering Research, 2017, 8(1): 1–14.
    [136] SARI K A M, SANI A R M. Applications of foamed lightweight concrete [J]. MATEC Web of Conferences, 2017, 97: 01097. DOI: 10.1051/matecconf/20179701097.
    [137] NARAYANAN N, RAMAMURTHY K. Structure and properties of aerated concrete: a review [J]. Cement and Concrete Composites, 2000, 22(5): 321–329. DOI: 10.1016/S0958-9465(00)00016-0.
    [138] TIKALSKY P J, POSPISIL J, MACDONALD W. A method for assessment of the freeze-thaw resistance of preformed foam cellular concrete [J]. Cement and Concrete Research, 2004, 34(5): 889–893. DOI: 10.1016/j.cemconres.2003.11.005.
    [139] LONG W W, WANG J S. Study on compressive strength and moisture content of different grades density of foam concrete [C]//Proceedings of the 2015 International Conference on Material Science and Applications. Atlantis Press. 2014: 167−172.
    [140] FALLIANO D, De DOMENICO D, RICCIARDI G, et al. Experimental investigation on the compressive strength of foamed concrete: effect of curing conditions, cement type, foaming agent and dry density [J]. Construction and Building Materials, 2018, 165: 735–749. DOI: 10.1016/j.conbuildmat.2017.12.241.
    [141] 马立秋. 爆炸荷载下城市浅埋隧道动力离心模型试验和数值研究 [D]. 北京: 清华大学, 2010.

    MA L Q. Centrifugal modeling and numerical research for urban shallow-buried tunnel under blasting [D]. Beijing: Tsinghua University, 2010.
    [142] 李永池. 波动力学 [M]. 合肥: 中国科学技术大学出版社, 2015.

    LI Y C. Wave mechanics [M]. Hefei: Press of University of Science and Technology of China, 2015.
    [143] LI Q M, MENG H. Attenuation or enhancement - a one-dimensional analysis on shock transmission in the solid phase of a cellular material [J]. International Journal of Impact Engineering, 2002, 27(10): 1049–1065. DOI: 10.1016/S0734-743X(02)00016-7.
    [144] CRAWFORD R E, HIGGINS C J, BULTMANN E H. The air force manual for design and analysis of hardened structures [M]. Washington: Air Force Weapons Laboratory, 1987: 341−346.
    [145] DING Y Y, WANG S L, ZHAO K, et al. Blast alleviation of cellular sacrificial cladding: a nonlinear plastic shock model [J]. International Journal of Applied Mechanics, 2016, 8(4): 1650057. DOI: 10.1142/S1758825116500575.
    [146] 穆朝民, 任辉启, 李永池, 等. 爆炸波在高饱和度饱和土中传播规律的研究 [J]. 岩土力学, 2010, 31(3): 875–880. DOI: 10.16285/j.rsm.2010.03.051.

    MU C M, REN H Q, LI Y C, et al. Propagation laws of blast wave in saturated soils with high saturation degree [J]. Rock and Soil Mechanics, 2010, 31(3): 875–880. DOI: 10.16285/j.rsm.2010.03.051.
    [147] WANG Z L, LI Y C. Further study on effect of concrete defense layer on evolution mechanism of stress-waves [J]. Theoretical and Applied Fracture Mechanics, 2007, 47(1): 15–25. DOI: 10.1016/j.tafmec.2006.10.002.
    [148] NIA A A, HAMEDANI J H. Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries [J]. Thin-Walled Structures, 2010, 48(12): 946–954. DOI: 10.1016/j.tws.2010.07.003.
    [149] 王展光, 徐玉红, 何德坪. 球形孔泡沫纯铝准静态压缩性能 [J]. 兵器材料科学与工程, 2008, 31(4): 15–19. DOI: 10.3969/j.issn.1004-244X.2008.04.004.

    WANG Z G, XU Y H, HE D P. Quasi-static compressive property of spherical pores Al foam [J]. Ordnance Material Science and Engineering, 2008, 31(4): 15–19. DOI: 10.3969/j.issn.1004-244X.2008.04.004.
    [150] ZHANG J X, QIN Q H, WANG T J. Compressive strengths and dynamic response of corrugated metal sandwich plates with unfilled and foam-filled sinusoidal plate cores [J]. Acta Mechanica, 2013, 224(4): 759–775. DOI: 10.1007/s00707-012-0770-5.
    [151] LI Z X, MA W, YAO S G, et al. Crashworthiness performance of corrugation- reinforced multicell tubular structures [J]. International Journal of Mechanical Sciences, 2021, 190: 106038. DOI: 10.1016/j.ijmecsci.2020.106038.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  807
  • HTML全文浏览量:  481
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 修回日期:  2022-08-30
  • 网络出版日期:  2022-09-06
  • 刊出日期:  2022-11-18

目录

/

返回文章
返回