弹体对超高性能混凝土侵彻深度的研究

聂晓东 吴祥云 龙志林 易治 姬楠 郭瑞奇

聂晓东, 吴祥云, 龙志林, 易治, 姬楠, 郭瑞奇. 弹体对超高性能混凝土侵彻深度的研究[J]. 爆炸与冲击, 2024, 44(2): 023302. doi: 10.11883/bzycj-2022-0282
引用本文: 聂晓东, 吴祥云, 龙志林, 易治, 姬楠, 郭瑞奇. 弹体对超高性能混凝土侵彻深度的研究[J]. 爆炸与冲击, 2024, 44(2): 023302. doi: 10.11883/bzycj-2022-0282
NIE Xiaodong, WU Xiangyun, LONG Zhilin, YI Zhi, JI Nan, GUO Ruiqi. Research on penetration depth of projectiles into ultra-high performance concrete targets[J]. Explosion And Shock Waves, 2024, 44(2): 023302. doi: 10.11883/bzycj-2022-0282
Citation: NIE Xiaodong, WU Xiangyun, LONG Zhilin, YI Zhi, JI Nan, GUO Ruiqi. Research on penetration depth of projectiles into ultra-high performance concrete targets[J]. Explosion And Shock Waves, 2024, 44(2): 023302. doi: 10.11883/bzycj-2022-0282

弹体对超高性能混凝土侵彻深度的研究

doi: 10.11883/bzycj-2022-0282
基金项目: 湖南省研究生科研创新项目(CX20190495,CX20200648)
详细信息
    作者简介:

    聂晓东(1993- ),男,博士研究生,1767816209@qq.com

    通讯作者:

    吴祥云(1964- ),男,博士,研究员,13503882599@139.com

  • 中图分类号: O383

Research on penetration depth of projectiles into ultra-high performance concrete targets

  • 摘要: 为了评估超高性能混凝土(UHPC)的抗侵彻性能,对UHPC靶板进行了侵彻试验与数值模拟。首先,利用$\varnothing $35 mm火炮对抗压强度为160 MPa的UHPC靶板开展了216~345 m/s速度下的弹体侵彻试验,结果表明:随着弹体速度的增加,侵彻深度与开坑直径皆有明显增加。随后在数值模拟过程中,确立了UHPC的RHT材料模型参数,为了验证材料模型的有效性,采用单轴压缩与霍普金森压杆试验结果对三维有限元模型进行了验证,模拟结果与实验结果吻合良好,表明参数选取科学合理。最后,对弹体侵彻UHPC的过程进行数值模拟,参数化分析了UHPC抗压强度、弹体质量、侵彻速度、弹径、弹头形状对UHPC侵彻深度的影响,并据此推导出弹体对UHPC侵彻深度计算公式。
  • 图  1  UHPC靶板

    Figure  1.  UHPC targets

    图  2  $\varnothing $35 mm火炮布置

    Figure  2.  Set up of 35-mm-caliber cannon

    图  3  试验弹照片及示意图(单位:mm)

    Figure  3.  Photo and schematic of the projectile (unit: mm)

    图  4  高速录像的下侵彻过程

    Figure  4.  Impact process captured by the high-speed camera

    图  5  无量纲侵彻深度

    Figure  5.  Dimensionless penetration depth

    图  6  弹体试验前后对比

    Figure  6.  Comparison between the unfired and recovered projectiles

    图  7  不同速度下UHPC靶板的损伤情况

    Figure  7.  Damage of UHPC target at different velocities

    图  8  普通混凝土与UHPC靶板的损伤对比[13]

    Figure  8.  Comparison of the damage between normal strength concrete and UHPC targets[13]

    图  9  单轴压缩与SHPB实验有限元模型

    Figure  9.  Finite element model for uniaxial compression and SHPB test

    图  10  SHPB典型波形

    Figure  10.  SHPB Typical waveforms

    图  11  UHPC应力应变曲线

    Figure  11.  Stress-strain curves of UHPC

    图  12  弹体侵彻UHPC有限元模型

    Figure  12.  The finite element model for the projectile impacting the UHPC target

    图  13  不同侵彻速度下靶板破坏情况的试验与数值模拟对比

    Figure  13.  Comparison of target damage between the experiment and the numerical simulation at different velocities

    图  14  速度对侵彻深度的影响

    Figure  14.  Depth of penetration versus striking velocities

    图  15  弹体质量对侵彻深度的影响

    Figure  15.  Depth of penetration versus mass of projectile

    图  16  弹头形状系数ϕ对侵彻深度的影响

    Figure  16.  Depth of penetration versus shape parameter of projectile ϕ

    图  17  弹体直径对侵彻深度的影响

    Figure  17.  Depth of penetration versus diameter of projectile

    图  18  抗压强度对侵彻深度的影响

    Figure  18.  Depth of penetration versus various compressive strength of concrete

    图  19  本文公式与常用经验公式对比

    Figure  19.  Comparison of the proposed model and empirical formula

    表  1  UHPC配合比

    Table  1.   Mixture design of UHPC kg

    水泥石英砂石英粉硅灰粉煤灰钢纤维减水剂
    6661065160160801571356.7
    下载: 导出CSV

    表  2  钢纤维参数

    Table  2.   Parameters of steel fiber

    直径/mm 长度/mm 拉伸强度/MPa 弹性模量/GPa 密度/(kg·m−3)
    0.2±0.02 13±1.3 2000±300 200 7800
    下载: 导出CSV

    表  3  侵彻试验结果

    Table  3.   Penetration tests data

    试验 M/kg v/(m·s−1) h/mm h/d dc/mm dc/d
    1# 1.001 216.2 145 4.83 200 6.67
    2# 1.004 216.7 132 4.40 155 5.17
    3# 1.000 226.9 147 4.90 220 7.33
    4# 0.999 292.0 194 6.47 250 8.33
    5# 1.003 304.1 203 6.77 200 6.67
    6# 1.001 308.7 199 6.63 300 10.00
    7# 0.999 313.2 199 6.63 300 10.00
    8# 1.003 345.4 227 7.57 320 10.67
     注:M为弹体质量,v为着靶速度,h为侵彻深度,d为弹体直径,dc为开坑直径。
    下载: 导出CSV

    表  4  UHPC的RHT模型参数

    Table  4.   RHT model parameters of UHPC

    ρ/(kg·m−3) G/GPa fc/MPa B1 B2 T1/GPa T2 A ${\dot \varepsilon ^{\text{c}}}$/s−1 ${\dot \varepsilon ^{\text{t}}}$/s−1 $\dot \varepsilon _{\text{0}}^{\text{c}}$/s−1 $\dot \varepsilon _{\text{0}}^{\text{t}}$/s−1
    2450 18.5 160 1.22 1.22 44 0 1.6 3.0×1025 3.0×1025 3.0×10−5 3.0×10−6
    pel/MPa $g_{\text{c}}^{\text{*}}$ $g_{\text{t}}^{\text{*}}$ $\xi $ D1 $\varepsilon _{\text{p}}^{\text{m}}$ Af nf A1/GPa A2/GPa A3/GPa βc
    53.3 0.53 0.7 0.67 0.04 0.008 1.75 0.52 44 49.38 11.28 0.0125
    βt B N D2 Q0 n $f_{\text{t}}^{\text{*}}$ $f_{\text{s}}^{\text{*}}$ pcom/GPa α0
    0.0143 0.0105 4.0 1 0.681 0.61 0.0613 0.267 6 1.18
     注:B1B2为状态方程参数,An为失效面参数;$\dot \varepsilon ^{\text{c}}$为压缩失效应变率,${\dot \varepsilon ^{\text{t}}}$为拉伸失效应变率,$\dot \varepsilon _{\text{0}}^{\text{c}}$为参考压缩应变率,$\dot \varepsilon _{\text{0}}^{\text{t}}$为参考拉伸应变率,$g_{\text{c}}^{\text{*}}$为压缩屈服面参数,$g_{\text{t}}^{\text{*}}$为拉伸屈服面参数,$\xi $为剪切模量缩减系数;${D_1}$、${D_2}$为损伤参数;$\varepsilon _{\text{p}}^{\text{m}}$为最小失效应变,${A_{\text{f}}}$、${n_{\text{f}}}$为残余应力面参数,${\beta _{\text{c}}}$为压缩应变率指数,${\beta _{\text{t}}}$为拉伸应变率指数,B为罗德角相关系数,N为孔隙度指数,${Q_0}$为拉压子午比参数,${p_{{\text{com}}}}$为孔隙完全压实时压力,${\alpha _0}$为初始孔隙度。
    下载: 导出CSV

    表  5  数值模拟与试验结果对比

    Table  5.   Comparison of experimental and numerical results

    试验 弹速/
    (m·s−1)
    侵彻深度/mm 深度
    误差/%
    开坑直径/mm 直径
    误差/%
    试验 计算 试验 计算
    1 216.2 145 134 2.9 200 210 5.0
    4 294.0 209 194 5.0 250 265 6.0
    9 345.4 227 243 7.0 320 300 6.3
    下载: 导出CSV

    表  6  数值模拟侵彻深度

    Table  6.   numerical simulated penetration depth

    工况 fc/MPa ϕ v/(m·s−1) M/kg d/mm h/mm
    1 160 10 200 1.0 30 134
    2 300 209
    3 350 245
    4 400 288
    5 450 330
    6 500 370
    7 550 410
    8 160 10 300 0.25 30 78
    9 0.5 110
    10 1.0 209
    11 1.5 245
    12 2.0 350
    13 2.5 386
    14 3.0 422
    15 160 4 300 1.0 30 142
    16 6 161
    17 8 175
    18 10 209
    19 12 215
    20 160 10 300 1.0 18 335
    21 24 239
    22 30 209
    23 36 162
    24 42 138
    25 35 10 300 1.0 30 360
    26 60 270
    27 90 255
    28 140 211
    29 160 209
    下载: 导出CSV
  • [1] 葛涛, 潘越峰, 谭可可, 等. 活性粉末混凝土抗冲击性能研究 [J]. 岩石力学与工程学报, 2007, 26(S1): 3553–3557. DOI: 10.3321/j.issn:1000-6915.2007.z1.148.

    GE T, FAN Y F, TAN K K, et al. Study on resistance of reactive powder concrete to impact [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3553–3557. DOI: 10.3321/j.issn:1000-6915.2007.z1.148.
    [2] 曹方良. 纳米材料对超高性能混凝土强度的影响研究 [D]. 长沙: 湖南大学, 2012: 1–4.

    CAO L F. Study on the effects of nano-materials on the strength of ultra high performance concrete [D]. Changsha: Hunan University, 2012: 1–4.
    [3] 任亮, 何瑜, 王凯, 等. 基于SHPB的UHPC冲击试验径向惯性效应分析 [J]. 爆炸与冲击, 2019, 39(10): 104104. DOI: 10.11883/bzycj-2018-0335.

    REN L, HE Y, WANG K, et al. Radial inertia effect analysis of UHPC impact test based on SHPB [J]. Explosion and Shock Waves, 2019, 39(10): 104104. DOI: 10.11883/bzycj-2018-0335.
    [4] 程月华, 吴昊, 谭可可, 等. 装甲钢/UHPC复合靶体抗侵彻性能试验与数值模拟研究 [J]. 爆炸与冲击, 2022, 42(5): 053302. DOI: 10.11883/bzycj-2021-0278.

    CHENG Y H, WU H, TAN K K, et al. Experimental and numerical studies on penetration resistance of armor steel/UHPC composite targets [J]. Explosion and Shock Waves, 2022, 42(5): 053302. DOI: 10.11883/bzycj-2021-0278.
    [5] TAI Y S. Flat ended projectile penetrating ultra-high strength concrete plate target [J]. Theoretical and Applied Fracture Mechanics, 2009, 51(2): 117–128. DOI: 10.1016/j.tafmec.2009.04.005.
    [6] WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. DOI: 10.1016/j.ijimpeng.2015.05.007.
    [7] SOVJÁK R, VAVŘINÍK T, MÁCA P, et al. Experimental investigation of ultra-high performance fiber reinforced concrete slabs subjected to deformable projectile impact [J]. Procedia Engineering, 2013, 65: 120–125. DOI: 10.1016/j.proeng.2013.09.021.
    [8] 张文华, 张云升, 陈振宇. 超高性能混凝土抗缩比钻地弹侵彻试验及数值仿真 [J]. 工程力学, 2018, 35(7): 167–175,186. DOI: 10.6052/j.issn.1000-4750.2017.03.0237.

    ZHANG W H, ZHANG Y S, CHEN Z Y. Penetration test and numerical simulation of ultral-high performance concrete with a scaled earth penetrator [J]. Engineering Mechanics, 2018, 35(7): 167–175,186. DOI: 10.6052/j.issn.1000-4750.2017.03.0237.
    [9] 赖建中, 过旭佳, 朱耀勇. 超高性能混凝土抗侵彻及抗爆炸性能研究 [J]. 河北工业大学学报, 2014, 43(6): 50–53. DOI: 10.14081/j.cnki.hgdxb.2014.06.013.

    LAI J Z, GUO X J, ZHU Y Y. Properties of ultra-high performance concrete subjected to penetration and explosion [J]. Journal of Hebei University of Technology, 2014, 43(6): 50–53. DOI: 10.14081/j.cnki.hgdxb.2014.06.013.
    [10] ZHAI Y X, WU H, FANG Q. Impact resistance of armor steel/ceramic/UHPC layered composite targets against 30CrMnSiNi2A steel projectiles [J]. International Journal of Impact Engineering, 2021, 154: 103888. DOI: 10.1016/j.ijimpeng.2021.103888.
    [11] ZHANG F L, POH L H, ZHANG M H. Critical parameters for the penetration depth in cement-based materials subjected to small caliber non-deformable projectile impact [J]. International Journal of Impact Engineering, 2020, 137: 103471. DOI: 10.1016/j.ijimpeng.2019.103471.
    [12] WU H, FANG Q, CHEN X. W, et al. Projectile penetration of ultra-high performance cement based composites at 510–1320 m/s [J]. Construction and Building Materials, 2015, 74: 188–200. DOI: 10.1016/j.conbuildmat.2014.10.041.
    [13] LIU J, WU C Q, SU Y, et al. Experimental and numerical studies of ultra-high performance concrete targets against high-velocity projectile impacts [J]. Engineering Structures, 2018, 173: 166–179. DOI: 10.1016/j.engstruct.2018.06.098.
    [14] LIU J, WU C Q, CHEN X W, et al. Numerical study of ultra-high performance concrete under non-deformable projectile penetration [J]. Construction and Building Materials, 2017, 135: 447–458. DOI: 10.1016/j.conbuildmat.2016.12.216.
    [15] 梁斌. 弹丸对有界混凝土靶的侵彻研究 [D]. 北京: 中国工程物理研究院, 2004: 10−15.
    [16] 薛建锋. 弹体侵彻与贯穿混凝土靶的效应研究 [D]. 南京: 南京理工大学, 2016: 96−105.

    XUE J F. Research on the performance of projectile penetration and perforation into concrete target [D]. Nanjing: Nanjing University of Science & Technology, 2016: 96−105.
    [17] 钱七虎, 王明洋. 岩土中的冲击爆炸效应 [M]. 北京: 国防工业出版社, 2010.

    QIAN Q H, WANG M Y. Impact and explosion effects in rock and soil [M]. Beijing: National Defense Industry Press, 2010.
    [18] 刘志林, 王晓鸣, 李文彬, 等. 靶板厚度对卵形弹丸垂直贯穿中等厚度混凝土靶的影响 [J]. 爆炸与冲击, 2018, 38(5): 1083–1090. DOI: 10.11883/bzycj-2017-0078.

    LIU Z L, WANG X M, LI W B, et al. Numerical and experimental study of an ogival projectile vertical perforating a medium thickness concrete target [J]. Explosion and Shock Waves, 2018, 38(5): 1083–1090. DOI: 10.11883/bzycj-2017-0078.
    [19] 王晓飞, 周海龙, 王海龙. 超高性能混凝土的抗剪强度 [J]. 硅酸盐学报, 2022, 50(8): 2190–2195. DOI: 10.14062/j.issn.0454-5648.20220127.

    WANG X F, ZHOU H L, WANG H L. Shear strength of ultra-high performance concrete [J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2190–2195. DOI: 10.14062/j.issn.0454-5648.20220127.
    [20] 李洪超. 岩石RHT模型理论及主要参数确定方法研究 [D]. 北京: 中国矿业大学(北京), 2016: 56–57.

    LI H C. The study of the rock RHT model and to determine the values of main parameters [D]. Beijing: China University of Mining & Technology (Beijing), 2016: 56–57.
    [21] HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates and high pressures [C]//Proceedings of the 14th International Symposium on Ballistics. Québec City, 1993: 591–600.
    [22] RIEDEL W, THOMA K, HIERMAIER S. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes [C]// Proceedings of the 9th International Symposium Interaction of the Effect of Munitions with Structures. Berlin, 1999.
    [23] LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. DOI: 10.1016/S0734-743X(02)00037-4.
    [24] FORRESTAL M J. Penetration into dry porous rock [J]. International Journal of Solids and Structures, 1986, 22(12): 1485–1500. DOI: 10.1016/0020-7683(86)90057-0.
    [25] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)80024-4.
    [26] FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid [J]. Journal of Applied Mechanics, 1988, 55(2): 275–279. DOI: 10.1115/1.3173672.
    [27] LUK V K, FORRESTAL M J, AMOS D E. Dynamic spherical cavity expansion of strain-hardening materials [J]. Journal of Applied Mechanics, 1991, 58(1): 1–6. DOI: 10.1115/1.2897150.
    [28] National Defense Research Committee. Effects of impact and explosion: summary technical report of division 2, Vol. 1 [R]. Washington DC: National Defense Research Committee, 1946.
    [29] ZHANG M H, SHIM V P W, LU G, et al. Resistance of high-strength concrete to projectile impact [J]. International Journal of Impact Engineering, 2005, 31(7): 825–841. DOI: 10.1016/j.ijimpeng.2004.04.009.
    [30] YOUNG C W. Penetration equations: SAND-97-2426 [R]. Albuquerque: Sandia National Laboratories, 1997.
    [31] WANG Z L, LI Y C, SHEN R F, et al. Numerical study on craters and penetration of concrete slab by ogive-nose steel projectile [J]. Computers and Geotechnics, 2007, 34(1): 1–9. DOI: 10.1016/j.compgeo.2006.09.001.
    [32] 杨华伟. 尖卵形长杆弹侵彻半无限混凝土靶的动力学行为研究 [D]. 太原: 太原理工大学, 2018: 44–49.

    YANG H W. Investigation on the dynamic response of long ogive-nosed projectiles penetrating into semi-infinite concrete targets [D]. Taiyuan: Taiyuan University of Technology, 2018: 44–49.
    [33] CHELAPATI C V, KENNEDY R P, WALL I B. Probabilistic assessment of aircraft hazard for nuclear power plants [J]. Nuclear Engineering and Design, 1972, 19(2): 333–364. DOI: 10.1016/0029-5493(72)90136-7.
    [34] 任辉启, 穆朝民, 刘瑞超, 等. 精确制导武器侵彻效应与工程防护 [M]. 北京: 科学出版社, 2016: 293–294.

    REN H Q, MU C M, LIU R C, et al. Penetration effects of precision guided weapons and engineering protection [M]. Beijing: Science Press, 2016: 293–294.
    [35] RONG Z D, SUN W, ZHANG Y S, et al. Anti-penetration behavior of ultra-high performance steel fiber reinforced concrete and its numerical simulation [J]. Journal of the Chinese Ceramic Society, 2010, 38(9): 1723–1730. DOI: 10.14062/j.issn.0454-5648.2010.09.001.
  • 加载中
图(19) / 表(6)
计量
  • 文章访问数:  664
  • HTML全文浏览量:  181
  • PDF下载量:  380
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 修回日期:  2023-02-24
  • 网络出版日期:  2023-03-13
  • 刊出日期:  2024-02-06

目录

    /

    返回文章
    返回