燃料物性参数对瓦斯煤尘复合爆炸的耦合作用

郭佳琪 裴蓓 徐梦娇 李世梁 韦双明 胡紫维

郭佳琪, 裴蓓, 徐梦娇, 李世梁, 韦双明, 胡紫维. 燃料物性参数对瓦斯煤尘复合爆炸的耦合作用[J]. 爆炸与冲击, 2022, 42(11): 115402. doi: 10.11883/bzycj-2022-0300
引用本文: 郭佳琪, 裴蓓, 徐梦娇, 李世梁, 韦双明, 胡紫维. 燃料物性参数对瓦斯煤尘复合爆炸的耦合作用[J]. 爆炸与冲击, 2022, 42(11): 115402. doi: 10.11883/bzycj-2022-0300
GUO Jiaqi, PEI Bei, XU Mengjiao, LI Shiliang, WEI Shuangming, HU Ziwei. Coupling effect of fuel property parameters on gas/coal dust composite explosion[J]. Explosion And Shock Waves, 2022, 42(11): 115402. doi: 10.11883/bzycj-2022-0300
Citation: GUO Jiaqi, PEI Bei, XU Mengjiao, LI Shiliang, WEI Shuangming, HU Ziwei. Coupling effect of fuel property parameters on gas/coal dust composite explosion[J]. Explosion And Shock Waves, 2022, 42(11): 115402. doi: 10.11883/bzycj-2022-0300

燃料物性参数对瓦斯煤尘复合爆炸的耦合作用

doi: 10.11883/bzycj-2022-0300
基金项目: 中国博士后科学基金(2019T120622);河南省高校科技创新人才支持计划(22HASTIT027);河南省科技攻关项目(212102310006)
详细信息
    作者简介:

    郭佳琪(1997- ),女,硕士研究生,guojq1997@home.hpu.edu.cn

    通讯作者:

    裴 蓓(1982- ),女,博士,副教授,smart128@126.com

  • 中图分类号: O389; X932

Coupling effect of fuel property parameters on gas/coal dust composite explosion

  • 摘要: 为研究瓦斯煤尘复合爆炸影响因素的耦合规律,对煤粉质量浓度、甲烷体积分数、煤粉粒径、煤粉种类等4种影响因素进行了多因素与单因素实验分析。通过正交实验,将各因素对爆炸的影响进行了定量分析,结果表明,4个因素对最大爆炸压力pmax的影响由强到弱依次为:甲烷体积分数、煤粉质量浓度、煤粉种类、煤粉粒径;对最大爆炸压力上升速率(dp/dt)max的影响程度由强到弱依次为:甲烷体积分数、煤粉质量浓度、煤粉粒径、煤粉种类。对于体积分数为9%、11%的甲烷,复合体系的pmax随煤粉的质量增加而减小。当煤粉质量浓度增加到100、200 g/m3时,在与体积分数为6%的甲烷耦合作用下,会产生更强的“激励”作用,且煤粉浓度较大时,挥发分低的煤种最佳瓦斯浓度会降低。甲烷体积分数存在临界值,该临界值会改变挥发分因素的影响方式:低于此临界值时,高挥发分煤尘体系的(dp/dt)max更高,(dp/dt)max来临时间更短;高于此临界值时,低挥发分体系具有更高的爆炸强度。粒径影响挥发分的作用,粒径越大,挥发分的影响差异越明显。当甲烷体积分数为11%时,挥发分高的煤尘更容易受粒径的影响,直径小的煤尘体系,爆炸系数Kst更小;而低挥发分煤粉在甲烷体积分数接近当量时受粒径影响更明显。
  • 图  1  20 L球形爆炸容器装置图

    Figure  1.  Diagram of a 20 L spherical explosive container device

    图  2  煤粉粒径分析结果

    Figure  2.  Results of particle size analysis of coal dust

    图  3  不同煤粉质量浓度下pmax随甲烷体积分数的变化

    Figure  3.  Variations of pmax with methane volume fraction at different coal dust concentrations

    图  4  不同甲烷体积分数下,pmax和(dp/dt)max随煤粉质量浓度的变化

    Figure  4.  Variations of pmax and (dp/dt)max with the mass concentration of coal dust at different methane volume fractions

    图  5  瓦斯煤尘爆炸(dp/dt)max及其来临时刻(煤粉质量浓度60 g/m3

    Figure  5.  (dp/dt)max of methane coal dust explosion and its moment of arrival (coal dust mass concentration: 60 g/m3)

    图  6  不同粒径煤粉的Kst随甲烷体积分数的变化(煤粉浓度100 g/m3

    Figure  6.  Variation of Kst with methane volume fraction for different particle sizes of coal dust (coal dust concentration: 100 g/m3)

    表  1  煤粉的工业分析

    Table  1.   Industrial analysis of coal dust

    煤样ω(挥发分)/%ω(水分)/%ω(灰分)/%ω(固定碳)/%
    褐煤38.026.68 4.9854.75
    无烟煤 7.972.5810.5979.91
    下载: 导出CSV

    表  2  正交实验各因素及水平参数

    Table  2.   Factors and level parameters of orthogonal experiment

    水平煤粉质量浓度/(g·m−3)甲烷体积分数/%煤粉粒径/μm煤粉种类
    1 30 6 39褐煤
    2 60 9123无烟煤
    310011283
    4200
    下载: 导出CSV

    表  3  正交实验的极差分析结果

    Table  3.   Results of extreme difference analysis of orthogonal experiments

    指标因变量煤粉质量浓度/(g·m−3)甲烷体积分数/%煤粉粒径/μm煤粉种类
    K1pmax 6.119 7.752 8.048 12.256
    (dp/dt)max238.406181.905283.525446.191
    K2pmax 6.132 8.489 8.153 12.041
    (dp/dt)max228.572386.572301.977437.548
    K3pmax 6.137 8.056 8.096
    (dp/dt)max220.595315.262298.237
    K4pmax 5.909
    (dp/dt)max196.166
    k1pmax 0.680 0.646 0.671 0.681
    (dp/dt)max 26.489 15.159 23.627 24.788
    k2pmax 0.681 0.707 0.679 0.669
    (dp/dt)max 25.397 32.214 25.165 24.308
    k3pmax 0.682 0.671 0.675
    (dp/dt)max 24.511 26.272 24.853
    k4pmax 0.657
    (dp/dt)max 21.796
    极差Rpmax 0.025 0.061 0.009 0.012
    (dp/dt)max 4.693 17.055 1.538 0.480
    最佳水平pmax1009138褐煤
    (dp/dt)max309138褐煤
    因素主次pmax甲烷体积分数、煤粉质量浓度、煤粉种类、煤粉粒径
    (dp/dt)max甲烷体积分数、煤粉质量浓度、煤粉种类、煤粉粒径
    下载: 导出CSV

    表  4  正交实验的方差分析结果

    Table  4.   Results of the variance analysis of orthogonal experiments

    试验因素因变量平方和均方F影响程度
    煤粉质量浓度pmax0.0050.002 1.307
    (dp/dt)max108.57536.192 3.597显著
    甲烷体积分数pmax0.0230.01210.037高度显著
    (dp/dt)max1798.827899.41489.378高度显著
    煤粉粒径pmax0.0010.001 0.201
    (dp/dt)max15.8597.930 0.788
    煤粉种类pmax0.0010.001 1.094
    (dp/dt)max2.0752.075 0.206
    随机误差Epmax0.0310.001
    (dp/dt)max271.69410.063
    下载: 导出CSV
  • [1] 张巍, 张帆, 张军, 等. 与新能源耦合发展 推动现代煤化工绿色低碳转型的思考与建议 [J]. 中国煤炭, 2021, 47(11): 56–60. DOI: 10.19880/j.cnki.ccm.2021.11.009.

    ZHANG W, ZHANG F, ZHANG J, et al. Coupling development with new energy and thinking and suggestions on promoting the green and low-carbon transformation of modern coal chemical industry [J]. China Coal, 2021, 47(11): 56–60. DOI: 10.19880/j.cnki.ccm.2021.11.009.
    [2] 毛健雄. 燃煤耦合生物质发电 [J]. 分布式能源, 2017, 2(5): 47–54. DOI: 10.16513/j.cnki.10-1427/tk.2017.05.008.

    MAO J X. Co-firing biomass with coal for power generation [J]. Distributed Energy, 2017, 2(5): 47–54. DOI: 10.16513/j.cnki.10-1427/tk.2017.05.008.
    [3] 马仑, 方庆艳, 张成, 等. 深度空气分级下煤粉耦合氨燃烧及NO生成特性 [J]. 洁净煤技术, 2022, 28(3): 201–213. DOI: 10.13226/j.issn.1006-6772.CC21101401.

    MA L, FANG Q Y, ZHANG C, et al. Combustion and NO formation characteristics of pulverized coal co-firing with ammonia in a deep-air staging condition [J]. Clean Coal Technology, 2022, 28(3): 201–213. DOI: 10.13226/j.issn.1006-6772.CC21101401.
    [4] 王德明, 邵振鲁, 朱云飞. 煤矿热动力重大灾害中的几个科学问题 [J]. 煤炭学报, 2021, 46(1): 57–64. DOI: 10.13225/j.cnki.jccs.YG20.1798.

    WANG D M, SHAO Z L, ZHU Y F. Several scientific issues on major thermodynamic disasters in coal mines [J]. Journal of China Coal Society, 2021, 46(1): 57–64. DOI: 10.13225/j.cnki.jccs.YG20.1798.
    [5] CASHDOLLAR K L. Overview of dust explosibility characteristics [J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3): 183–199. DOI: 10.1016/S0950-4230(99)00039-X.
    [6] GOING J E, CHATRATHI K, CASHDOLLAR K L. Flammability limit measurements for dusts in 20-L and 1-m3 vessels [J]. Journal of Loss Prevention in the Process Industries, 2000, 13(3): 209–219. DOI: 10.1016/S0950-4230(99)00043-1.
    [7] KUNDU S K, ZANGANEH J, ESCHEBACH D, et al. Explosion severity of methane–coal dust hybrid mixtures in a ducted spherical vessel [J]. Powder Technology, 2018, 323: 95–102. DOI: 10.1016/j.powtec.2017.09.041.
    [8] MISHRA D P, AZAM S. Experimental investigation on effects of particle size, dust concentration and dust-dispersion-air pressure on minimum ignition temperature and combustion process of coal dust clouds in a G-G furnace [J]. Fuel, 2018, 227: 424–433. DOI: 10.1016/j.fuel.2018.04.122.
    [9] CLONEY C T, RIPLEY R C, PEGG M J, et al. Lower flammability limits of hybrid mixtures containing 10 micron coal dust particles and methane gas [J]. Process Safety and Environmental Protection, 2018, 120: 215–226. DOI: 10.1016/j.psep.2018.09.004.
    [10] CLONEY C T, RIPLEY R C, PEGG M J, et al. Role of particle diameter in the lower flammability limits of hybrid mixtures containing coal dust and methane gas [J]. Journal of Loss Prevention in the Process Industries, 2019, 61: 206–212. DOI: 10.1016/j.jlp.2019.06.010.
    [11] 李庆钊, 翟成, 吴海进, 等. 基于20 L球形爆炸装置的煤尘爆炸特性研究 [J]. 煤炭学报, 2011, 36(S1): 119–124. DOI: 10.13225/j.cnki.jccs.2011.s1.031.

    LI Q Z, ZHAI C, WU H J, et al. Investigation on coal dust explosion characteristics using 20 L explosion sphere vessels [J]. Journal of China Coal Society, 2011, 36(S1): 119–124. DOI: 10.13225/j.cnki.jccs.2011.s1.031.
    [12] LI Y, XU H L, WANG X S. Experimental study on the influence of initial pressure on explosion of methane-coal dust mixtures [J]. Procedia Engineering, 2013, 62: 980–984. DOI: 10.1016/j.proeng.2013.08.151.
    [13] SONG S X, CHENG Y F, MENG X R, et al. Hybrid CH4/coal dust explosions in a 20-L spherical vessel [J]. Process Safety and Environmental Protection, 2019, 122: 281–287. DOI: 10.1016/j.psep.2018.12.023.
    [14] LIU Q M, BAI C H, LI X D, et al. Coal dust/air explosions in a large-scale tube [J]. Fuel, 2010, 89(2): 329–335. DOI: 10.1016/j.fuel.2009.07.010.
    [15] 司荣军, 李润之, 苏岱峰. 煤尘云质量浓度对瓦斯爆炸压力影响的试验研究 [J]. 安全与环境学报, 2018, 18(5): 1796–1798. DOI: 10.13637/j.issn.1009-6094.2018.05.025.

    SI R J, LI R Z, SU D F. Investigation of the influence of the coal dust cloud on the gas explosion pressure [J]. Journal of Safety and Environment, 2018, 18(5): 1796–1798. DOI: 10.13637/j.issn.1009-6094.2018.05.025.
    [16] 李润之. 瓦斯煤尘共存条件下的煤尘云爆炸下限 [J]. 爆炸与冲击, 2018, 38(4): 913–917. DOI: 10.11883/bzycj-2016-0331.

    LI R Z. Minimum explosive concentration of coal dust cloud in the coexistence of gas and coal dust [J]. Explosion and Shock Waves, 2018, 38(4): 913–917. DOI: 10.11883/bzycj-2016-0331.
    [17] 景国勋, 张胜旗, 段新伟, 等. 竖直管道内煤尘浓度对瓦斯爆炸特性影响研究 [J]. 中国安全科学学报, 2020, 30(3): 15–20. DOI: 10.16265/j.cnki.issn1003-3033.2020.03.003.

    JING G X, ZHANG S Q, DUAN X W, et al. Impact of coal dust concentration on gas explosion in vertical pipelines [J]. China Safety Science Journal, 2020, 30(3): 15–20. DOI: 10.16265/j.cnki.issn1003-3033.2020.03.003.
    [18] 景国勋, 彭乐, 班涛, 等. 甲烷煤尘耦合爆炸传播特性及伤害研究 [J]. 中国安全科学学报, 2022, 32(1): 72–78. DOI: 10.16265/j.cnki.issn1003-3033.2022.01.010.

    JING G X, PENG L, BAN T, et al. Research on pressure propagation and injury of methane and coal dust coupled explosion [J]. China Safety Science Journal, 2022, 32(1): 72–78. DOI: 10.16265/j.cnki.issn1003-3033.2022.01.010.
    [19] CAO W G, QIN Q F, CAO W, et al. Experimental and numerical studies on the explosion severities of coal dust/air mixtures in a 20-L spherical vessel [J]. Powder Technology, 2017, 310: 17–23. DOI: 10.1016/j.powtec.2017.01.019.
    [20] 裴蓓, 朱知印, 余明高, 等. 瓦斯/煤尘爆炸初期复合火焰加速及灾害强化机制分析 [J]. 工程热物理学报, 2021, 42(7): 1879–1886.

    PEI B, ZHU Z Y, YU M G, et al. Analysis on the acceleration of composite flame and the strengthening mechanism of disaster in the initial stage of gas/coal dust explosion [J]. Journal of Engineering Thermophysics, 2021, 42(7): 1879–1886.
    [21] 陈晓坤, 张自军, 王秋红, 等. 20 L近球形容器中微米级铝粉的爆炸特性 [J]. 爆炸与冲击, 2018, 38(5): 1130–1136. DOI: 10.11883/bzycj-2017-0101.

    CHEN X K, ZHANG Z J, WANG Q H, et al. Explosion characteristics of micro-sized aluminum dust in 20L spherical vessel [J]. Explosion and Shock Waves, 2018, 38(5): 1130–1136. DOI: 10.11883/bzycj-2017-0101.
    [22] 覃小玲, 李晓泉. NH4H2PO4对蔗糖粉尘爆炸的抑制作用试验研究 [J]. 中国安全科学学报, 2020, 30(4): 41–46. DOI: 10.16265/j.cnki.issn1003-3033.2020.04.007.

    QIN X L, LI X Q. Experimental research on suppression of NH4H2PO4 on sucrose dust explosion [J]. China Safety Science Journal, 2020, 30(4): 41–46. DOI: 10.16265/j.cnki.issn1003-3033.2020.04.007.
    [23] WU X L, XU S, PANG A M, et al. Hazard evaluation of ignition sensitivity and explosion severity for three typical MH2 (M= Mg, Ti, Zr) of energetic materials [J]. Defence Technology, 2021, 17(4): 1262–1268. DOI: 10.1016/j.dt.2020.06.011.
    [24] PICO P, RATKOVICH N, MUÑOZ F, et al. Analysis of the explosion behaviour of wheat starch/pyrolysis gases hybrid mixtures through experimentation and CFD-DPM simulations [J]. Powder Technology, 2020, 374: 330–347. DOI: 10.1016/j.powtec.2020.07.016.
    [25] WANG X W, WANG Z R, NI L, et al. Explosion characteristics of aluminum powder in different mixed gas environments [J]. Powder Technology, 2020, 369: 53–71. DOI: 10.1016/j.powtec.2020.04.056.
    [26] 徐伟巍, 王家祎, 覃欣欣, 等. 酒精蒸气-烟草粉尘耦合体系燃爆猛度特性研究 [J]. 工业安全与环保, 2021, 47(5): 9–12. DOI: 10.3969/j.issn.1001-425X.2021.05.003.

    XU W W, WANG J Y, QIN X X, et al. Study on the explosion fierce characteristics of alcohol vapor-tobacco dust coupling [J]. Industrial Safety and Environmental Protection, 2021, 47(5): 9–12. DOI: 10.3969/j.issn.1001-425X.2021.05.003.
    [27] 孙超伦, 张一民, 裴蓓, 等. 惰气/赤泥两相抑爆剂抑制瓦斯爆炸试验研究 [J]. 中国安全科学学报, 2020, 30(10): 112–118. DOI: 10.16265/j.cnki.issn1003-3033.2020.10.016.

    SUN C L, ZHANG Y M, PEI B, et al. Experimental study on suppression effects of inert gas/red mud two-phase inhibitors on gas explosion [J]. China Safety Science Journal, 2020, 30(10): 112–118. DOI: 10.16265/j.cnki.issn1003-3033.2020.10.016.
    [28] ABBAS Z, ZINKE R, GABEL D, et al. Theoretical evaluation of lower explosion limit of hybrid mixtures [J]. Journal of Loss Prevention in the Process Industries, 2019, 60: 296–302. DOI: 10.1016/j.jlp.2019.05.014.
    [29] ABBAS Z, GABEL D, KRIETSCH A, et al. Quasi-static dispersion of dusts for the determination of lower explosion limits of hybrid mixtures [J]. Journal of Loss Prevention in the Process Industries, 2022, 74: 104640. DOI: 10.1016/j.jlp.2021.104640.
    [30] JIANG J J, LIU Y, MANNAN M S. A correlation of the lower flammability limit for hybrid mixtures [J]. Journal of Loss Prevention in the Process Industries, 2014, 32: 120–126. DOI: 10.1016/j.jlp.2014.07.014.
    [31] ADDAI E K, CLOUTHIER M, AMYOTTE P, et al. Experimental investigation of limiting oxygen concentration of hybrid mixtures [J]. Journal of Loss Prevention in the Process Industries, 2019, 57: 120–130. DOI: 10.1016/j.jlp.2018.11.016.
    [32] ADDAI E K, GABEL D, KAMAL M, et al. Minimum ignition energy of hybrid mixtures of combustible dusts and gases [J]. Process Safety and Environmental Protection, 2016, 102: 503–512. DOI: 10.1016/j.psep.2016.05.005.
    [33] 杨虎, 钟波, 刘琼荪. 应用数理统计 [M]. 北京: 清华大学出版社, 2006: 123-158.

    YANG H, ZHONG B, LIU Q S. Application mathematical statistic study [M]. Beijing: Tsinghua University Press, 2006: 123-158.
    [34] 王亚军, 徐秀艳, 秦宪礼. 煤粉对泡沫金属抑制爆炸火焰波性能的影响规律 [J]. 煤炭学报, 2017, 42(11): 2885–2891. DOI: 10.13225/j.cnki.jccs.2017.0476.

    WANG Y J, XU X Y, QIN X L. Study on the influence regulation after adding coal dust for inhibition of flame wave of gas explosion by foam metal [J]. Journal of China Coal Society, 2017, 42(11): 2885–2891. DOI: 10.13225/j.cnki.jccs.2017.0476.
    [35] GARCIA-AGREDA A, DI BENEDETTO A, RUSSO P, et al. Dust/gas mixtures explosion regimes [J]. Powder Technology, 2011, 205(1): 81–86. DOI: 10.1016/j.powtec.2010.08.069.
    [36] 周永浩, 甘波, 姜海鹏, 等. 甲烷/煤尘复合爆炸火焰的传播特性 [J]. 爆炸与冲击, 2022, 42(1): 015402. DOI: 10.11883/bzycj-2021-0064.

    ZHOU Y H, GAN B, JIANG H P, et al. Investigations on the flame propagation characteristics in methane and coal dust hybrid explosions [J]. Explosion and Shock Waves, 2022, 42(1): 015402. DOI: 10.11883/bzycj-2021-0064.
    [37] NISHIMURA I, MOGI T, DOBASHI R. Simple method for predicting pressure behavior during gas explosions in confined spaces considering flame instabilities [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 351–354. DOI: 10.1016/j.jlp.2011.08.009.
    [38] 汤其建, 秦汝祥, 戴广龙. 索特平均直径对煤粉及其在瓦斯气氛下爆炸特性的影响 [J]. 煤炭学报, 2021, 46(2): 489–497. DOI: 10.13225/j.cnki.jccs.2019.1539.

    TANG Q J, QIN R X, DAI G L. Effect of Sauter mean diameter of coal dust on its explosibility with and without methane gas [J]. Journal of China Coal Society, 2021, 46(2): 489–497. DOI: 10.13225/j.cnki.jccs.2019.1539.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  426
  • HTML全文浏览量:  113
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11
  • 修回日期:  2022-08-22
  • 网络出版日期:  2022-09-09
  • 刊出日期:  2022-11-18

目录

    /

    返回文章
    返回