柱形装药近地动爆冲击波周向传播规律研究

王振宁 尹建平 伊建亚 李旭东

王振宁, 尹建平, 伊建亚, 李旭东. 柱形装药近地动爆冲击波周向传播规律研究[J]. 爆炸与冲击, 2023, 43(6): 063201. doi: 10.11883/bzycj-2022-0313
引用本文: 王振宁, 尹建平, 伊建亚, 李旭东. 柱形装药近地动爆冲击波周向传播规律研究[J]. 爆炸与冲击, 2023, 43(6): 063201. doi: 10.11883/bzycj-2022-0313
WANG Zhenning, YIN Jianping, YI Jianya, LI Xudong. A study on the circumferential propagation law of the shock waves produced by the near ground dynamic explosion of cylindrical charge[J]. Explosion And Shock Waves, 2023, 43(6): 063201. doi: 10.11883/bzycj-2022-0313
Citation: WANG Zhenning, YIN Jianping, YI Jianya, LI Xudong. A study on the circumferential propagation law of the shock waves produced by the near ground dynamic explosion of cylindrical charge[J]. Explosion And Shock Waves, 2023, 43(6): 063201. doi: 10.11883/bzycj-2022-0313

柱形装药近地动爆冲击波周向传播规律研究

doi: 10.11883/bzycj-2022-0313
基金项目: 2021年山西省基础研究计划(自由探索类)(20210302123207)
详细信息
    作者简介:

    王振宁(1996- ),男,硕士研究生,2449188587@qq.com

    通讯作者:

    尹建平(1975- ),男,博士,教授,yjp123@nuc.edu.cn

  • 中图分类号: O383

A study on the circumferential propagation law of the shock waves produced by the near ground dynamic explosion of cylindrical charge

  • 摘要: 战斗部复杂的末弹道参数会影响近地爆炸冲击波的周向传播规律及对目标的毁伤程度,研究柱形装药近地爆炸冲击波传播规律对精确评估毁伤效能具有重要的工程意义。基于AUTODYN-3D软件对不同末弹道参数的柱形装药近地爆炸进行了数值模拟,通过对2个方向分别建模,获得了柱形装药近地爆炸下前、后、侧3个方向的冲击波压力数据;研究了战斗部的落速、落角、爆心高度和装药长径比4个参数对柱形装药近地爆炸冲击波传播的影响规律,分析了冲击波的演化过程、峰值压力和马赫杆高度。研究结果表明:静爆时,爆心高度是影响冲击波马赫杆高度的主要因素,落角与装药长径是影响马赫杆高度方向差异的主要因素;动爆时,能够增大周向马赫杆高度,前方最显著;另外,随着动爆速度的提升,前向冲击波峰值线性增大。正交优化的结果显示,4种变量中,动爆速度对柱形装药前方峰值压力极差最大,落角对后方峰值压力极差最大,爆心高度对马赫杆高度影响最大。通过研究柱形装药近地动爆冲击波周向传播规律,表明合理的调整装药参数和近地爆炸姿态对实现某方向的最大毁伤或减小超压伤害具有借鉴意义。
  • 图  1  柱形装药近地动爆示意图

    Figure  1.  Schematic diagram of near ground dynamic explosion of cylindrical charge

    图  2  柱形装药近地爆炸建模及测点布置

    Figure  2.  Modeling and measuring point diagram of near ground explosion of cylindrical charge

    图  3  实验验证示意图

    Figure  3.  Schematic diagram of experimental verification

    图  4  不同飞行速度下柱形装药的压力云图

    Figure  4.  Pressure nephogram of cylindrical charge at different flight speeds

    图  5  不同飞行速度下柱形装药的压力矢量图

    Figure  5.  Pressure vector diagrams of cylindrical charge at different flight speeds

    图  6  不同起爆条件下柱形装药的压力云图

    Figure  6.  Pressure nephograms of cylindrical charge under different initiation conditions

    图  7  不同地面条件下柱形装药的压力云图

    Figure  7.  Pressure nephograms of cylindrical charge under different ground conditions

    图  8  近地爆炸马赫波的产生过程示意图

    Figure  8.  Schematic diagram of Mach wave generation process of near ground explosion

    图  9  不同时刻下柱形装药的马赫波压力云图

    Figure  9.  Mach wave pressure nephogram of cylindrical charge at different times

    图  10  不同爆心高度下柱形装药的峰值压力的对比

    Figure  10.  Comparison of peak pressures of the cylindrical charge under different heights of the explosion center

    图  11  不同高度测点柱形装药的压力曲线

    Figure  11.  Pressure curves of cylindrical charge at measuring points of different heights

    图  12  入射角与比例炸高的关系

    Figure  12.  Relationship between incident angle and proportional explosion height

    图  13  近地爆炸冲击波斜反射示意图

    Figure  13.  Schematic diagram of oblique reflection of shock wave produced by near ground explosion

    图  14  倾斜角度不同时柱形装药的马赫波压力云图

    Figure  14.  Mach wave pressure nephograms of cylindrical charges with different inclined angles

    图  15  倾斜角度不同时柱形装药的近地状态压力云图

    Figure  15.  Near ground pressure nephograms of cylindrical charges with different inclined angles

    图  16  倾斜角为45°时不同方向柱形装药的压力云图

    Figure  16.  Pressure nephograms of cylindrical charge in different directions when the inclination angle is 45°

    图  17  柱形装药的峰值压力随倾斜角度的变化

    Figure  17.  Peak pressure of cylindrical charge varied with inclined angle

    图  18  不同方向柱形装药的峰值压力随倾斜角度的变化

    Figure  18.  Variation of peak pressure of cylindrical charge with inclined angle in different directions

    图  19  不同动爆速度下柱形装药的冲击波压力云图

    Figure  19.  Shock wave pressure nephogram of cylindrical charge under different dynamic explosion velocities

    图  20  柱形装药的峰值压力随动爆速度变化

    Figure  20.  Diagram of peak pressure of cylindrical charge varying with dynamic explosion velocity

    图  21  不同动爆速度下柱形装药在侧方的马赫波压力云图

    Figure  21.  Mach wave pressure nephogram of cylindrical charge on the side under different dynamic explosion velocities

    图  22  不同方向柱形装药的峰值压力随动爆速度的变化

    Figure  22.  Peak pressure varying with dynamic explosion velocity for cylindrical charge in different directions

    图  23  不同长径比柱形装药在前、后方的马赫波压力云图

    Figure  23.  Mach wave pressure nephogram of cylindrical charges with different aspect ratios at the front and rear

    图  24  不同长径比柱形装药在侧方的马赫波压力云图

    Figure  24.  Mach wave pressure nephogram of cylindrical charges with different aspect ratios on the side

    图  25  不同方向柱形装药的峰值压力随长径比变化

    Figure  25.  Peak pressure varying with length-to-diameter ratio for cylindrical charge in different directions

    图  26  正交优化下对装药前方近地峰值压力的各因素影响

    Figure  26.  Influence of various factors of near ground peak pressure in front of the charge under orthogonal optimization

    图  27  正交优化下对装药后方近地峰值压力的各因素影响

    Figure  27.  Influence of various factors of near ground peak pressure at the rear of the charge under orthogonal optimization

    图  28  正交优化下对装药前方马赫杆高度的各因素影响

    Figure  28.  Influence of various factors on Mach stem height in front of the charge under orthogonal optimization

    图  29  正交优化下对装药后方马赫杆高度的各因素影响

    Figure  29.  Influence of various factors on Mach stem height at the rear of the charge under orthogonal optimization

    表  1  TNT炸药状态方程参数

    Table  1.   Parameters of equation of state for TNT explosive

    A/GPaB/GPaR1R2E0/GPaωV
    3.73773.7474.150.90.060.31
    下载: 导出CSV

    表  2  空气状态方程参数

    Table  2.   Parameters of equation of state for air

    ρ/(kg·m−3)γe/(MJ·kg−1)
    1.2251.4206.8
    下载: 导出CSV

    表  3  材料模型

    Table  3.   Material model

    材料状态方程强度模型失效模型
    空气理想气体
    TNTJWL
    下载: 导出CSV

    表  4  测点压力的计算值与实验值对比

    Table  4.   Comparison between calculated values and experimental values on measuring point pressure

    TNT质量/kg测点距离/m压力/MPa误差/%
    实验值计算值
    2.01.121.231.4114.56
    2.01.950.690.724.30
    0.81.120.800.9012.86
    0.81.950.480.6024.17
    0.21.120.300.326.67
    0.21.950.090.1455.56
    下载: 导出CSV

    表  5  不同起爆条件下柱形装药的峰值压力

    Table  5.   Peak pressure of cylindrical charge under different initiation conditions

    初始速度/(m·s−1)2 ms时的压力/MPa4 ms时的压力/MPa
    激波加动爆动爆静爆激波加动爆动爆静爆
    6001.041.040.980.400.400.39
    1 2000.980.981.000.390.390.40
    下载: 导出CSV

    表  6  不同地面条件下柱形装药的峰值压力和马赫杆高度

    Table  6.   Peak pressure and Mach stem height of cylindrical charge under different ground conditions

    地面类型起爆高度/m峰值压力/MPa马赫杆高度/mm
    0.5 ms1.0 ms0.5 ms1.0 ms
    刚性地面0.24.212.146501 380
    沙土地面0.24.122.066101 340
    刚性地面1.07.953.23 20 90
    沙土地面1.08.853.27 20 90
    下载: 导出CSV

    表  7  不同倾斜角度下柱形装药在前、后方的马赫杆高度

    Table  7.   Mach stem heights of cylindrical chargeswith different inclined angles at the front and rear

    角度/(°) 马赫杆高度/mm
    1.0 ms2.0 ms3.0 ms
    前方后方前方后方前方后方
    0 90 90480 4801 0101 010
    303101707401 0401 1801 850
    601303907501 1801 2601 900
    90130130610 6101 2501 250
    下载: 导出CSV

    表  8  不同长径比柱形装药的马赫杆高度

    Table  8.   Mach stem height of cylindrical charge with different aspect ratio

    长径比 马赫杆高度/mm
    1.0 ms2.0 ms3.0 ms
    前方后方侧方前方后方侧方前方后方侧方
    1∶1480150901 250 8705201 9701 5201 060
    1.5∶138017060 940 9904101 4801 740 890
    2∶131017050 7401 0503501 1801 850 790
    2.5∶126017040 6101 080310 9601 920 740
    下载: 导出CSV
  • [1] 陈龙明, 李志斌, 陈荣. 装药动爆冲击波特性研究 [J]. 爆炸与冲击, 2020, 40(1): 013201. DOI: 10.11883/bzycj-2019-0029.

    CHEN L M, LI Z B, CHEN R. Characteristics of dynamic explosive shock wave of moving charge [J]. Explosion and Shock Waves, 2020, 40(1): 013201. DOI: 10.11883/bzycj-2019-0029.
    [2] 聂源, 蒋建伟, 李梅. 球形装药动态爆炸冲击波超压场计算模型 [J]. 爆炸与冲击, 2017, 37(5): 951–956. DOI: 10.11883/1001-1455(2017)05-0951-06.

    NIE Y, JIANG J W, LI M. Overpressure calculation model of sphere charge blastingwith moving velocity [J]. Explosion and Shock Waves, 2017, 37(5): 951–956. DOI: 10.11883/1001-1455(2017)05-0951-06.
    [3] 蒋海燕, 李芝绒, 张玉磊, 等. 运动装药空中爆炸冲击波特性研究 [J]. 高压物理学报, 2017, 31(3): 286–294. DOI: 10.11858/gywlxb.2017.03.010.

    JIANG H Y, LI Z R, ZHANG Y L, et al. Characteristics of air blast wave field for explosive chargemoving at different velocities [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 286–294. DOI: 10.11858/gywlxb.2017.03.010.
    [4] 郗洪柱, 孔德仁, 乐贵高, 等. 圆柱装药近地空爆冲击波峰值超压空间转换模型 [J]. 高压物理学报, 2021, 35(3): 032301. DOI: 10.11858/gywlxb.20200652.

    XI H Z, KONG D R, YUE G G, et al. Space conversion model of peak overpressure in near-earth air blast shockwave with cylindrical charge [J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 032301. DOI: 10.11858/gywlxb.20200652.
    [5] 郑监, 卢芳云, 陈荣. 柱形装药条件下锥形水中爆炸激波管内的冲击波特性 [J]. 爆炸与冲击, 2021, 41(10): 103201. DOI: 10.11883/bzycj-2020-0316.

    ZHENG J, LU F Y, CHEN R. Shock wave characteristics in a conical water explosion shock tube under cylindrical charge condition [J]. Explosion and Shock Waves, 2021, 41(10): 103201. DOI: 10.11883/bzycj-2020-0316.
    [6] 廖真, 唐德高, 李治中, 等. 近地面空中爆炸马赫反射数值模拟研究 [J]. 振动与冲击, 2020, 39(5): 164–169, 176. DOI: 10.13465/j.cnki.jvs.2020.05.022.

    LIAO Z, TANG D G, LI Z Z, et al. Numerical simulation for Mach reflection in air explosion near ground [J]. Journal of Vibration and Shock, 2020, 39(5): 164–169, 176. DOI: 10.13465/j.cnki.jvs.2020.05.022.
    [7] 陈鑫, 高轩能. 炸药近地爆炸的数值模拟及影响参数的分析 [J]. 华侨大学学报(自然科学版), 2014, 35(5): 570–575. DOI: 10.11830/ISSN.1000-5013.2014.05.0570.

    CHEN X, GAO X N. Numerical simulation and analysis of influence parameters for explosions near ground [J]. Journal of Huaqiao University (Natural Science), 2014, 35(5): 570–575. DOI: 10.11830/ISSN.1000-5013.2014.05.0570.
    [8] WANG Y, WANG H, CUI C Y, et al. Investigating different grounds effects on shock wave propagation resulting from near-ground explosion [J]. Applied Sciences, 2019, 9(17): 3639. DOI: 10.3390/app9173639.
    [9] LU Y, WANG Z Q. Characterization of structural effects from above-ground explosion using coupled numerical simulation [J]. Computers & Structures, 2006, 84(28): 1729–1742. DOI: 10.1016/j.compstruc.2006.05.002.
    [10] DENG G Q, YU X. Numerical study on the case effect of a bomb air explosion [J]. Defence Technology, 2021, 17(4): 1461–1470. DOI: 10.1016/j.dt.2020.08.003.
    [11] LI T, WANG C, YANG T H, et al. A novel construction method of computational domains on large-scale near-ground explosion problems [J]. Journal of Computational Physics, 2020, 407: 109226. DOI: 10.1016/j.jcp.2019.109226.
    [12] YOU W B, DING Y H, YAO Y. Static explosion field reconstruction based on the improved biharmonic spline interpolation [J]. IEEE Sensors Journal, 2020, 20(13): 7235–7240. DOI: 10.1109/JSEN.2020.2978502.
    [13] 任朋飞, 王显会, 张进成, 等. 刚性地面爆炸冲击场仿真与试验研究 [J]. 科学技术与工程, 2017, 17(21): 30–36. DOI: 10.3969/j.issn.1671-1815.2017.21.006.

    REN P F, WANG X H, ZHANG J C, et al. Simulation and experimental study on explosive shock field on rigid ground [J]. Science Technology and Engineering, 2017, 17(21): 30–36. DOI: 10.3969/j.issn.1671-1815.2017.21.006.
    [14] 赵蓓蕾, 崔村燕, 陈景鹏, 等. 近地爆炸地面冲击波传播规律的数值研究 [J]. 四川兵工学报, 2015, 36(9): 45–48. DOI: 10.11809/scbgxb2015.09.012.

    ZHAO B L, CUI C Y, CHEN J P, et al. Numerical study of propagation law of ground shock wave in near surface explosion [J]. Journal of Ordnance Equipment Engineering, 2015, 36(9): 45–48. DOI: 10.11809/scbgxb2015.09.012.
    [15] 成凤生, 宋浦, 顾晓辉, 等. TNT装药爆炸波在刚性平面上方传播反射的数值研究 [J]. 爆破器材, 2011, 40(4): 1–4. DOI: 10.3969/j.issn.1001-8352.2011.04.001.

    CHENG F S, SONG P, GU X H, et al. Numerical investigation into the propagation and reflection of TNT blast wave above rigid plane [J]. Explosive Materials, 2011, 40(4): 1–4. DOI: 10.3969/j.issn.1001-8352.2011.04.001.
    [16] 段晓瑜, 崔庆忠, 郭学永, 等. 炸药在空气中爆炸冲击波的地面反射超压实验研究 [J]. 兵工学报, 2016, 37(12): 2277–2283. DOI: 10.3969/j.issn.1000-1093.2016.12.013.

    DUAN X Y, CUI Q Z, GUO X Y, et al. Experimental investigation of ground reflected overpressure of shock wave in air blast [J]. Acta Armamentarii, 2016, 37(12): 2277–2283. DOI: 10.3969/j.issn.1000-1093.2016.12.013.
    [17] 杜红棉, 曹学友, 何志文, 等. 近地爆炸空中和地面冲击波特性分析和验证 [J]. 弹箭与制导学报, 2014, 34(4): 65–68. DOI: 10.3969/j.issn.1673-9728.2014.04.018.

    DU H M, CAO X Y, HE Z W, et al. Analysisand validation for characteristics of air and ground shock wave near field explosion [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(4): 65–68. DOI: 10.3969/j.issn.1673-9728.2014.04.018.
    [18] 姚成宝, 王宏亮, 浦锡锋, 等. 空中强爆炸冲击波地面反射规律数值模拟研究 [J]. 爆炸与冲击, 2019, 39(11): 112201. DOI: 10.11883/bzycj-2018-0287.

    YAO C B, WANG H L, PU X F, et al. Numerical simulation of intense blast wave reflected on rigid ground [J]. Explosion and Shock Waves, 2019, 39(11): 112201. DOI: 10.11883/bzycj-2018-0287.
    [19] 吴赛, 赵均海, 张冬芳, 等. 刚性地面对爆炸冲击波传播规律的影响 [J]. 工程爆破, 2020, 26(2): 1–8. DOI: 10.3969/j.issn.1006-7051.2020.02.001.

    WU S, ZHAO J H, ZHANG D F, et al. Influence of rigid ground on propagation characteristics of blast wave [J]. Engineering Blasting, 2020, 26(2): 1–8. DOI: 10.3969/j.issn.1006-7051.2020.02.001.
    [20] 辛春亮, 徐更光, 刘科种, 等. 考虑后燃烧效应的TNT空气中爆炸的数值模拟 [J]. 含能材料, 2008, 16(2): 160–163. DOI: 10.3969/j.issn.1006-9941.2008.02.011.

    XIN C L, XU G G, LIU K Z, et al. Numerical simulation of TNT explosion with post-detonation burning effect in air [J]. Chinese Journal of Energetic Materials, 2008, 16(2): 160–163. DOI: 10.3969/j.issn.1006-9941.2008.02.011.
    [21] 郭炜, 俞统昌, 金朋刚. 三波点的测量与实验技术研究 [J]. 火炸药学报, 2007, 30(4): 55–57, 61. DOI: 10.3969/j.issn.1007-7812.2007.04.014.

    GUO W, YU T C, JIN P G. Test of triple point and study on its test technology [J]. Chinese Journal of Explosives and Propellants, 2007, 30(4): 55–57, 61. DOI: 10.3969/j.issn.1007-7812.2007.04.014.
    [22] 畅博, 谷鸿平, 牛晨伟, 等. 运动炸药近地爆炸冲击波场特性研究 [J]. 爆破, 2018, 35(3): 49–54. DOI: 10.3963/j.issn.1001-487X.2018.03.008.

    CHANG B, GU H P, NIU C W, et al. Characteristics investigation on shock wave field of near ground blasting of moving explosive charge [J]. Blasting, 2018, 35(3): 49–54. DOI: 10.3963/j.issn.1001-487X.2018.03.008.
    [23] 曾一鑫, 白春华, 陈健, 等. 含铝炸药震源激发地震波的数值模拟 [J]. 高压物理学报, 2013, 27(6): 872–876. DOI: 10.11858/gywlxb.2013.06.012.

    ZENG Y X, BAI C H, CHEN J, et al. Simulations of seismic waves stimulated by aluminized explosive [J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 872–876. DOI: 10.11858/gywlxb.2013.06.012.
  • 加载中
图(29) / 表(8)
计量
  • 文章访问数:  528
  • HTML全文浏览量:  99
  • PDF下载量:  271
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 修回日期:  2022-09-30
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2023-06-05

目录

    /

    返回文章
    返回