[1] |
周南, 乔登江. 脉冲束辐照材料动力学 [M]. 北京: 国防工业出版社, 2002.
|
[2] |
毛勇建, 邓宏见, 何荣建. 强脉冲软X光喷射冲量的几种模拟加载技术 [J]. 强度与环境, 2003, 30(2): 55–64. DOI: 10.3969/j.issn.1006-3919.2003.02.008.MAO Y J, DENG H J, HE R J. Several simulation techniques of blow-off impulses by intense pulsed cold X-rays [J]. Structure and Environment Engineering, 2003, 30(2): 55–64. DOI: 10.3969/j.issn.1006-3919.2003.02.008.
|
[3] |
LINDBERG H E, MURRAY Y. Calibration and analysis of the SPLAT (spray lead at target) impulse simulation technique: DNA-TR-81-333 [R]. San Jose, CA: Aptek Inc. , 1983.
|
[4] |
LINDBERG H E. Deformation ripple from the SPLAT (spray-lead-at-target) impulse simulation technique: AD-A190-861 [R]. San Jose, CA: Aptek Inc. , 1987.
|
[5] |
赵国民, 张若棋, 彭常贤, 等. 铅壳柔爆索冲量作用下圆柱壳体结构响应实验研究 [J]. 爆炸与冲击, 2002, 22(2): 126–131.ZHAO G M, ZHANG R Q, PENG C X, et al. Experimental studies of the structural response of cylindrical shells under mild detonating fuse impulse [J]. Explosion and Shock Waves, 2002, 22(2): 126–131.
|
[6] |
BENHAM R A, 褚桂敏. 用光引爆炸药模拟X射线喷溅脉冲对全尺寸再入弹头的作用 [J]. 导弹与航天运载技术, 1984(1): 96–103.
|
[7] |
RIVERA W G. Cosine distributed impulsive loading of a thin aluminum ring by a light initiated high explosive driven flyer plate: SAND2007-1161C [R]. Albuquerque: Sandia National Laboratories, 2007.
|
[8] |
RIVERA W G. Light initiated high explosive driven flyer plate design, implementation, and performance: SAND2004-5236C [R]. Albuquerque: Sandia National Laboratories, 2004.
|
[9] |
RIVERA W G. Light initiated high explosive driven flyer plate impulse technique for combined material and structural response: SAND2006-6699C [R]. Albuquerque: Sandia National Laboratories, 2006.
|
[10] |
COVERT T D, RIVERA W G. Light initiated high explosive driven flyer plate motion and impact dynamics: SAND2007-1424C [R]. Albuquerque: Sandia National Laboratories, 2007.
|
[11] |
COVERT T T. Staubli TX-90XL robot qualification at the LLIHE: SAND2010-7222 [R]. Albuquerque: Sandia National Laboratories, 2010.
|
[12] |
COVERT T T. VISAR validation test series at the light initiated high explosive (LIHE) facility: SAND2007-0779 [R]. Albuquerque: Sandia National Laboratories, 2007.
|
[13] |
随亚光, 陈博, 徐海斌, 等. 光敏炸药加载实验中的电磁干扰防护技术 [J]. 现代应用物理, 2019, 10(2): 021203. DOI: 10.12061/j.issn.2095-6223.2019.021203.SUI Y G, CHEN B, XU H B, et al. Electromagnetic interference protection technology in loading experiment of light-initiated explosive [J]. Modern Applied Physics, 2019, 10(2): 021203. DOI: 10.12061/j.issn.2095-6223.2019.021203.
|
[14] |
徐海斌, 裴明敬, 张德志, 等. 酸性乙炔银制备方法及其表征 [J]. 火工品, 2019(4): 40–43.XU H B, PEI M J, ZHANG D Z, et al. Synthesis and characterization of silver acetylide-silver nitrate [J]. Initiators and Pyrotechnics, 2019(4): 40–43.
|
[15] |
徐海斌, 裴明敬, 张德志, 等. 乙炔银-硝酸银合成工艺优化及其性能测试 [J]. 火炸药学报, 2018, 41(6): 573–577. DOI: 10.14077/j.issn.1007-7812.2018.06.007.XU H B, PEI M J, ZHANG D Z, et al. Optimization of synthesis process and property test of silver acetylide-silver nitrate [J]. Chinese Journal of Explosives and Propellants, 2018, 41(6): 573–577. DOI: 10.14077/j.issn.1007-7812.2018.06.007.
|
[16] |
裴明敬, 徐海斌, 王等旺, 等. 酸性乙炔银的光起爆特性 [J]. 高压物理学报, 2017, 31(6): 813–819. DOI: 10.11858/gywlxb.2017.06.017.PEI M J, XU H B, WANG D W, et al. Detonation characteristics of light-initiated explosive silver acetylide-silver nitrate [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 813–819. DOI: 10.11858/gywlxb.2017.06.017.
|
[17] |
杨军, 裴明敬, 王等旺, 等. 基于光子多普勒测速仪的冲量传感器 [J]. 兵工学报, 2017, 38(S1): 150–154.YANG J, PEI M J, WANG D W, et al. Impulse sensor based on photonic doppler velocimetry [J]. Acta Armamentarii, 2017, 38(S1): 150–154.
|
[18] |
RIVERA W G, BENHAM R A, DUGGINS B D, et al. Explosive technique for impulse loading of space structures: SAND 99-3175C [R]. Albuquerque: Sandia National Laboratories, 1999.
|
[19] |
毛勇建, 李玉龙, 陈颖, 等. 炸药条加载圆柱壳的数值模拟(Ⅰ): 流固耦合模拟 [J]. 高压物理学报, 2012, 26(2): 155–162. DOI: 10.11858/gywlxb.2012.02.006.MAO Y J, LI Y L, CHEN Y, et al. Numerical simulation of cylindrical shell loaded by explosive rods (Ⅰ): fluid-structure interaction simulation [J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 155–162. DOI: 10.11858/gywlxb.2012.02.006.
|
[20] |
毛勇建, 李玉龙, 陈颖, 等. 炸药条加载圆柱壳的数值模拟(Ⅱ): 解耦分析与试验验证 [J]. 高压物理学报, 2013, 27(1): 76–82. DOI: 10.11858/gywlxb.2013.01.011.MAO Y J, LI Y L, CHEN Y, et al. Numerical simulation of cylindrical shell loaded by explosive rods (Ⅱ): decoupling analysis and experimental validation [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 76–82. DOI: 10.11858/gywlxb.2013.01.011.
|
[21] |
毛勇建, 李玉龙, 陈颖, 等. 炸药条加载圆柱壳的数值模拟(Ⅲ): 对X射线力学效应的模拟等效性分析 [J]. 高压物理学报, 2013, 27(5): 711–718. DOI: 10.11858/gywlxb.2013.05.009.MAO Y J, LI Y L, CHEN Y, et al. Numerical simulation of loading cylindrical shell by explosive rods (Ⅲ): fidelity for simulating X-ray mechanical effect [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 711–718. DOI: 10.11858/gywlxb.2013.05.009.
|
[22] |
卢强, 王占江, 刘晓新, 等. 薄片炸药与固体靶冲量耦合的计算模型 [J]. 爆炸与冲击, 2017, 37(1): 84–91. DOI: 10.11883/1001-1455(2017)01-0084-08.LU Q, WANG Z J, LIU X X, et al. A computational model for impulse coupling between sheet explosive and target [J]. Explosion and Shock Waves, 2017, 37(1): 84–91. DOI: 10.11883/1001-1455(2017)01-0084-08.
|
[23] |
文明, 洪延姬, 王军, 等. 冲击摆冲量测量的原理及精度分析 [J]. 装备指挥技术学院学报, 2005, 16(6): 110–113. DOI: 10.3783/j.issn.1673-0127.2005.06.026.WEN M, HONG Y J, WANG J, et al. The principle and accuracy analysis of impulse measurement with impact pendulum [J]. Journal of the Academy of Equipment Command and Technology, 2005, 16(6): 110–113. DOI: 10.3783/j.issn.1673-0127.2005.06.026.
|
[24] |
DOBRATZ B M, CRAWFORD P C. LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants: UCRL-52997 [R]. Livermore: Lawrence Livermore National Laboratory, 1981.
|
[25] |
张社荣, 李宏璧, 王高辉, 等. 空中和水下爆炸冲击波数值模拟的网格尺寸效应对比分析 [J]. 水利学报, 2015, 46(3): 298–306. DOI: 10.13243/j.cnki.slxb.2015.03.006.ZHANG S R, LI H B, WANG G H, et al. Comparative analysis of mesh size effects on numerical simulation of shock wave in air blast and underwater explosion [J]. Journal of Hydraulic Engineering, 2015, 46(3): 298–306. DOI: 10.13243/j.cnki.slxb.2015.03.006.
|
[26] |
SHI Y C, LI Z X, HAO H. Mesh size effect in numerical simulation of blast wave propagation and interaction with structures [J]. Transactions of Tianjin University, 2008, 14(6): 396–402. DOI: 10.1007/s12209-008-0068-9.
|