用十字形超细药条离散群同步起爆实现超低比冲量加载

丁洋 卢强 李进 郭志昀 王占江

丁洋, 卢强, 李进, 郭志昀, 王占江. 用十字形超细药条离散群同步起爆实现超低比冲量加载[J]. 爆炸与冲击, 2023, 43(5): 054101. doi: 10.11883/bzycj-2022-0314
引用本文: 丁洋, 卢强, 李进, 郭志昀, 王占江. 用十字形超细药条离散群同步起爆实现超低比冲量加载[J]. 爆炸与冲击, 2023, 43(5): 054101. doi: 10.11883/bzycj-2022-0314
DING Yang, LU Qiang, LI Jin, GUO Zhiyun, WANG Zhanjiang. Realization of ultra-low specific impulse loading by synchronous initiation of discrete group of cross ultra-fine explosive rods[J]. Explosion And Shock Waves, 2023, 43(5): 054101. doi: 10.11883/bzycj-2022-0314
Citation: DING Yang, LU Qiang, LI Jin, GUO Zhiyun, WANG Zhanjiang. Realization of ultra-low specific impulse loading by synchronous initiation of discrete group of cross ultra-fine explosive rods[J]. Explosion And Shock Waves, 2023, 43(5): 054101. doi: 10.11883/bzycj-2022-0314

用十字形超细药条离散群同步起爆实现超低比冲量加载

doi: 10.11883/bzycj-2022-0314
基金项目: 国家自然科学基金(12072290)
详细信息
    作者简介:

    丁 洋(1992- ),男,博士研究生,助理研究员,dingyang@nint.ac.cn

    通讯作者:

    王占江(1961- ),男,博士,研究员,wangzhanjiang@nint.ac.cn

  • 中图分类号: O383

Realization of ultra-low specific impulse loading by synchronous initiation of discrete group of cross ultra-fine explosive rods

  • 摘要: 余弦分布载荷的化爆加载技术是高空核爆软X射线辐照下空间结构动态响应考核的主要手段。为适应新型空间飞行器结构考核的复杂构型、高同步性和低比冲量载荷设计要求,提出了一种用十字形超细药条离散群同步起爆实现超低比冲量加载的方法。实验结果验证表明:(1)所制作的十字形超细药条,最小截面尺寸为0.33 mm×0.5 mm,传爆性能稳定,并可通过直径0.5 mm的柔爆索直接起爆;(2)与相同布药密度的条状布药方式相比,布药空间均匀度提高了76.7%;(3)所采用的21点柔爆索同步起爆网络,起爆率达100%,起爆不同步性小于1 μs。进一步建立了离散片炸药加载数值计算模型,分析了离散片炸药群同步起爆加载的比冲量空间分布和匀化规律,将匀化过程分为扩散段、叠加段和均匀段3个阶段;对比了方形、十字形、短条形3种形状药片阵列的比冲量演化过程,发现十字形药片所需匀化距离最短、均匀度最高,仅需约0.8倍布药间距即可使比冲量均匀度偏差降至10%以下。
  • 图  1  不同宽度片炸药条

    Figure  1.  Sheet explosive rods with different widths

    图  2  十字形片炸药组件及其制作过程

    Figure  2.  Cross sheet explosive components and their manufacturing process

    图  3  十字形片炸药离散起爆阵列

    Figure  3.  Cross sheet explosive array for discrete detonation

    图  4  十字形布药与条状布药的均匀度对比

    Figure  4.  Comparison of the evenness between cross and strip distributions

    图  5  测试系统原理图

    Figure  5.  Schematic diagram of test system

    图  6  测试系统实物图

    Figure  6.  Physical photo of test system

    图  7  起爆阵列的安装方式

    Figure  7.  Installation mode of the explosive array

    图  8  实验后定位板样貌

    Figure  8.  Appearance of the positioning plate after experiment

    图  9  高速摄影捕捉爆炸瞬间

    Figure  9.  Explosion moment captured by high-speed photography

    图  10  探针信号

    Figure  10.  Signals of probes

    图  11  冲量摆系统输出信号

    Figure  11.  Output voltage signals of the impulse pendulum system

    图  12  数值计算模型

    Figure  12.  The numerical model according to the experiment

    图  13  三种网格尺寸

    Figure  13.  Three types of mesh sizes

    图  14  不同网格尺寸的计算结果与实测值的对比

    Figure  14.  Comparison of experimental and numerical results under various mesh sizes

    图  15  比冲量演化规律研究数值模型

    Figure  15.  The numerical model for studying the evolution of specific impulse

    图  16  布药间距25 mm时比冲量空间分布及演化规律

    Figure  16.  Spatial distribution and evolution of specific impulse with a spacing of 25 mm

    图  17  不同药片间距下比冲量演化规律

    Figure  17.  Evolution of specific impulse under different spacings of sheet explosive

    图  18  不同形状药片的设计思路

    Figure  18.  Design ideas for sheet explosives with different shapes

    图  19  不同药片形状的数值模型

    Figure  19.  Numerical models of different shapes of sheet explosive

    图  20  不同形状药片阵列的峰值比冲量和均匀度偏差演化过程

    Figure  20.  Evolution of peak specific impulse and uniformity deviation of sheet explosive arrays with different shapes

    图  21  条状布药滑移爆轰加载数值模型和比冲量匀化过程

    Figure  21.  The numerical model and homogenization process of specific impulse under sliding detonation loading of explosive rods

  • [1] 周南, 乔登江. 脉冲束辐照材料动力学 [M]. 北京: 国防工业出版社, 2002.
    [2] 毛勇建, 邓宏见, 何荣建. 强脉冲软X光喷射冲量的几种模拟加载技术 [J]. 强度与环境, 2003, 30(2): 55–64. DOI: 10.3969/j.issn.1006-3919.2003.02.008.

    MAO Y J, DENG H J, HE R J. Several simulation techniques of blow-off impulses by intense pulsed cold X-rays [J]. Structure and Environment Engineering, 2003, 30(2): 55–64. DOI: 10.3969/j.issn.1006-3919.2003.02.008.
    [3] LINDBERG H E, MURRAY Y. Calibration and analysis of the SPLAT (spray lead at target) impulse simulation technique: DNA-TR-81-333 [R]. San Jose, CA: Aptek Inc. , 1983.
    [4] LINDBERG H E. Deformation ripple from the SPLAT (spray-lead-at-target) impulse simulation technique: AD-A190-861 [R]. San Jose, CA: Aptek Inc. , 1987.
    [5] 赵国民, 张若棋, 彭常贤, 等. 铅壳柔爆索冲量作用下圆柱壳体结构响应实验研究 [J]. 爆炸与冲击, 2002, 22(2): 126–131.

    ZHAO G M, ZHANG R Q, PENG C X, et al. Experimental studies of the structural response of cylindrical shells under mild detonating fuse impulse [J]. Explosion and Shock Waves, 2002, 22(2): 126–131.
    [6] BENHAM R A, 褚桂敏. 用光引爆炸药模拟X射线喷溅脉冲对全尺寸再入弹头的作用 [J]. 导弹与航天运载技术, 1984(1): 96–103.
    [7] RIVERA W G. Cosine distributed impulsive loading of a thin aluminum ring by a light initiated high explosive driven flyer plate: SAND2007-1161C [R]. Albuquerque: Sandia National Laboratories, 2007.
    [8] RIVERA W G. Light initiated high explosive driven flyer plate design, implementation, and performance: SAND2004-5236C [R]. Albuquerque: Sandia National Laboratories, 2004.
    [9] RIVERA W G. Light initiated high explosive driven flyer plate impulse technique for combined material and structural response: SAND2006-6699C [R]. Albuquerque: Sandia National Laboratories, 2006.
    [10] COVERT T D, RIVERA W G. Light initiated high explosive driven flyer plate motion and impact dynamics: SAND2007-1424C [R]. Albuquerque: Sandia National Laboratories, 2007.
    [11] COVERT T T. Staubli TX-90XL robot qualification at the LLIHE: SAND2010-7222 [R]. Albuquerque: Sandia National Laboratories, 2010.
    [12] COVERT T T. VISAR validation test series at the light initiated high explosive (LIHE) facility: SAND2007-0779 [R]. Albuquerque: Sandia National Laboratories, 2007.
    [13] 随亚光, 陈博, 徐海斌, 等. 光敏炸药加载实验中的电磁干扰防护技术 [J]. 现代应用物理, 2019, 10(2): 021203. DOI: 10.12061/j.issn.2095-6223.2019.021203.

    SUI Y G, CHEN B, XU H B, et al. Electromagnetic interference protection technology in loading experiment of light-initiated explosive [J]. Modern Applied Physics, 2019, 10(2): 021203. DOI: 10.12061/j.issn.2095-6223.2019.021203.
    [14] 徐海斌, 裴明敬, 张德志, 等. 酸性乙炔银制备方法及其表征 [J]. 火工品, 2019(4): 40–43.

    XU H B, PEI M J, ZHANG D Z, et al. Synthesis and characterization of silver acetylide-silver nitrate [J]. Initiators and Pyrotechnics, 2019(4): 40–43.
    [15] 徐海斌, 裴明敬, 张德志, 等. 乙炔银-硝酸银合成工艺优化及其性能测试 [J]. 火炸药学报, 2018, 41(6): 573–577. DOI: 10.14077/j.issn.1007-7812.2018.06.007.

    XU H B, PEI M J, ZHANG D Z, et al. Optimization of synthesis process and property test of silver acetylide-silver nitrate [J]. Chinese Journal of Explosives and Propellants, 2018, 41(6): 573–577. DOI: 10.14077/j.issn.1007-7812.2018.06.007.
    [16] 裴明敬, 徐海斌, 王等旺, 等. 酸性乙炔银的光起爆特性 [J]. 高压物理学报, 2017, 31(6): 813–819. DOI: 10.11858/gywlxb.2017.06.017.

    PEI M J, XU H B, WANG D W, et al. Detonation characteristics of light-initiated explosive silver acetylide-silver nitrate [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 813–819. DOI: 10.11858/gywlxb.2017.06.017.
    [17] 杨军, 裴明敬, 王等旺, 等. 基于光子多普勒测速仪的冲量传感器 [J]. 兵工学报, 2017, 38(S1): 150–154.

    YANG J, PEI M J, WANG D W, et al. Impulse sensor based on photonic doppler velocimetry [J]. Acta Armamentarii, 2017, 38(S1): 150–154.
    [18] RIVERA W G, BENHAM R A, DUGGINS B D, et al. Explosive technique for impulse loading of space structures: SAND 99-3175C [R]. Albuquerque: Sandia National Laboratories, 1999.
    [19] 毛勇建, 李玉龙, 陈颖, 等. 炸药条加载圆柱壳的数值模拟(Ⅰ): 流固耦合模拟 [J]. 高压物理学报, 2012, 26(2): 155–162. DOI: 10.11858/gywlxb.2012.02.006.

    MAO Y J, LI Y L, CHEN Y, et al. Numerical simulation of cylindrical shell loaded by explosive rods (Ⅰ): fluid-structure interaction simulation [J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 155–162. DOI: 10.11858/gywlxb.2012.02.006.
    [20] 毛勇建, 李玉龙, 陈颖, 等. 炸药条加载圆柱壳的数值模拟(Ⅱ): 解耦分析与试验验证 [J]. 高压物理学报, 2013, 27(1): 76–82. DOI: 10.11858/gywlxb.2013.01.011.

    MAO Y J, LI Y L, CHEN Y, et al. Numerical simulation of cylindrical shell loaded by explosive rods (Ⅱ): decoupling analysis and experimental validation [J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 76–82. DOI: 10.11858/gywlxb.2013.01.011.
    [21] 毛勇建, 李玉龙, 陈颖, 等. 炸药条加载圆柱壳的数值模拟(Ⅲ): 对X射线力学效应的模拟等效性分析 [J]. 高压物理学报, 2013, 27(5): 711–718. DOI: 10.11858/gywlxb.2013.05.009.

    MAO Y J, LI Y L, CHEN Y, et al. Numerical simulation of loading cylindrical shell by explosive rods (Ⅲ): fidelity for simulating X-ray mechanical effect [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 711–718. DOI: 10.11858/gywlxb.2013.05.009.
    [22] 卢强, 王占江, 刘晓新, 等. 薄片炸药与固体靶冲量耦合的计算模型 [J]. 爆炸与冲击, 2017, 37(1): 84–91. DOI: 10.11883/1001-1455(2017)01-0084-08.

    LU Q, WANG Z J, LIU X X, et al. A computational model for impulse coupling between sheet explosive and target [J]. Explosion and Shock Waves, 2017, 37(1): 84–91. DOI: 10.11883/1001-1455(2017)01-0084-08.
    [23] 文明, 洪延姬, 王军, 等. 冲击摆冲量测量的原理及精度分析 [J]. 装备指挥技术学院学报, 2005, 16(6): 110–113. DOI: 10.3783/j.issn.1673-0127.2005.06.026.

    WEN M, HONG Y J, WANG J, et al. The principle and accuracy analysis of impulse measurement with impact pendulum [J]. Journal of the Academy of Equipment Command and Technology, 2005, 16(6): 110–113. DOI: 10.3783/j.issn.1673-0127.2005.06.026.
    [24] DOBRATZ B M, CRAWFORD P C. LLNL explosives handbook: properties of chemical explosives and explosives and explosive simulants: UCRL-52997 [R]. Livermore: Lawrence Livermore National Laboratory, 1981.
    [25] 张社荣, 李宏璧, 王高辉, 等. 空中和水下爆炸冲击波数值模拟的网格尺寸效应对比分析 [J]. 水利学报, 2015, 46(3): 298–306. DOI: 10.13243/j.cnki.slxb.2015.03.006.

    ZHANG S R, LI H B, WANG G H, et al. Comparative analysis of mesh size effects on numerical simulation of shock wave in air blast and underwater explosion [J]. Journal of Hydraulic Engineering, 2015, 46(3): 298–306. DOI: 10.13243/j.cnki.slxb.2015.03.006.
    [26] SHI Y C, LI Z X, HAO H. Mesh size effect in numerical simulation of blast wave propagation and interaction with structures [J]. Transactions of Tianjin University, 2008, 14(6): 396–402. DOI: 10.1007/s12209-008-0068-9.
  • 加载中
图(21)
计量
  • 文章访问数:  283
  • HTML全文浏览量:  68
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-19
  • 修回日期:  2023-01-19
  • 网络出版日期:  2023-02-21
  • 刊出日期:  2023-05-05

目录

    /

    返回文章
    返回